
Distributed Databases
Chapter 1: Introduction

• Syllabus

• Data Independence and Distributed Data Processing

• Definition of Distributed databases

• Promises of Distributed Databases

• Technical Problems to be Studied

• Conclusion

1 www.edutechlearners.com

Syllabus

• Introduction

• Distributed DBMS Architecture

• Distributed Database Design

• Query Processing

• Transaction Management

• Distributed Concurrency Control

• Distributed DBMS Reliability

• Parallel Database Systems

2 www.edutechlearners.com

Data Independence

• In the old days, programs stored data in regular files

• Each program has to maintain its own data

– huge overhead

– error-prone

3 www.edutechlearners.com

Data Independence . . .

• The development of DBMS helped to fully achieve data independence (transparency)

• Provide centralized and controlled data maintenance and access

• Application is immune to physical and logical file organization

4 www.edutechlearners.com

Data Independence . . .

• Distributed database system is the union of what appear to be two diametrically opposed
approaches to data processing: database systems and computer network

– Computer networks promote a mode of work that goes against centralization

• Key issues to understand this combination

– The most important objective of DB technology is integration not centralization

– Integration is possible without centralization, i.e., integration of databases and
networking does not mean centralization (in fact quite opposite)

• Goal of distributed database systems: achieve data integration and data distribution
transparency

5 www.edutechlearners.com

Distributed Computing/Data Processing

• A distributed computing system is a collection of autonomous processing elements
that are interconnected by a computer network. The elements cooperate in order to
perform the assigned task.

• The term “distributed” is very broadly used. The exact meaning of the word depends on
the context.

• Synonymous terms:

– distributed function

– distributed data processing

– multiprocessors/multicomputers

– satellite processing

– back-end processing

– dedicated/special purpose computers

– timeshared systems

– functionally modular systems

6 www.edutechlearners.com

Distributed Computing/Data Processing . . .

• What can be distributed?

– Processing logic

– Functions

– Data

– Control

• Classification of distributed systems with respect to various criteria

– Degree of coupling, i.e., how closely the processing elements are connected

∗ e.g., measured as ratio of amount of data exchanged to amount of local processing
∗ weak coupling, strong coupling

– Interconnection structure

∗ point-to-point connection between processing elements
∗ common interconnection channel

– Synchronization

∗ synchronous
∗ asynchronous

7 www.edutechlearners.com

Definition of DDB and DDBMS

• A distributed database (DDB) is a collection of multiple, logically interrelated databases
distributed over a computer network

• A distributed database management system (DDBMS) is the software that manages
the DDB and provides an access mechanism that makes this distribution transparent to
the users

• The terms DDBMS and DDBS are often used interchangeably

• Implicit assumptions

– Data stored at a number of sites each site logically consists of a single processor

– Processors at different sites are interconnected by a computer network (we do not
consider multiprocessors in DDBMS, cf. parallel systems)

– DDBS is a database, not a collection of files (cf. relational data model). Placement
and query of data is impacted by the access patterns of the user

– DDBMS is a collections of DBMSs (not a remote file system)

8 www.edutechlearners.com

Definition of DDB and DDBMS . . .

9 www.edutechlearners.com

Definition of DDB and DDBMS . . .

• Example: Database consists of 3 relations employees, projects, and
assignment which are partitioned and stored at different sites (fragmentation).

• What are the problems with queries, transactions, concurrency, and reliability?

10 www.edutechlearners.com

What is not a DDBS?

• The following systems are parallel database systems and are quite different from (though
related to) distributed DB systems

Shared Memory Shared Disk

Shared Nothing Central Databases

11 www.edutechlearners.com

Applications

• Manufacturing, especially multi-plant manufacturing

• Military command and control

• Airlines

• Hotel chains

• Any organization which has a decentralized organization structure

12 www.edutechlearners.com

Promises of DDBSs

Distributed Database Systems deliver the following advantages:

• Higher reliability

• Improved performance

• Easier system expansion

• Transparency of distributed and replicated data

13 www.edutechlearners.com

Promises of DDBSs . . .

Higher reliability

• Replication of components

• No single points of failure

• e.g., a broken communication link or processing element does not bring down the entire
system

• Distributed transaction processing guarantees the consistency of the database and
concurrency

14 www.edutechlearners.com

Promises of DDBSs . . .

Improved performance

• Proximity of data to its points of use

– Reduces remote access delays

– Requires some support for fragmentation and replication

• Parallelism in execution

– Inter-query parallelism

– Intra-query parallelism

• Update and read-only queries influence the design of DDBSs substantially

– If mostly read-only access is required, as much as possible of the data should be
replicated

– Writing becomes more complicated with replicated data

15 www.edutechlearners.com

Promises of DDBSs . . .

Easier system expansion

• Issue is database scaling

• Emergence of microprocessor and workstation technologies

– Network of workstations much cheaper than a single mainframe computer

• Data communication cost versus telecommunication cost

• Increasing database size

16 www.edutechlearners.com

Promises of DDBSs . . .

Transparency

• Refers to the separation of the higher-level semantics of the system from the lower-level
implementation issues

• A transparent system “hides” the implementation details from the users.

• A fully transparent DBMS provides high-level support for the development of complex
applications.

(a) User wants to see one database (b) Programmer sees many databases

17 www.edutechlearners.com

Promises of DDBSs . . .

Various forms of transparency can be distingushed for DDBMSs:

• Network transparency (also called distribution transparency)

– Location transparency

– Naming transparency

• Replication transparency

• Fragmentation transparency

• Transaction transparency

– Concurrency transparency

– Failure transparency

• Performance transparency

18 www.edutechlearners.com

Promises of DDBSs . . .

• Network/Distribution transparency allows a user to perceive a DDBS as a single,
logical entity

• The user is protected from the operational details of the network (or even does not know
about the existence of the network)

• The user does not need to know the location of data items and a command used to
perform a task is independent from the location of the data and the site the task is
performed (location transparency)

• A unique name is provided for each object in the database (naming transparency)

– In absence of this, users are required to embed the location name as part of an
identifier

19 www.edutechlearners.com

Promises of DDBSs . . .

Different ways to ensure naming transparency:

• Solution 1: Create a central name server; however, this results in

– loss of some local autonomy

– central site may become a bottleneck

– low availability (if the central site fails remaining sites cannot create new objects)

• Solution 2: Prefix object with identifier of site that created it

– e.g., branch created at site S1 might be named S1.BRANCH

– Also need to identify each fragment and its copies

– e.g., copy 2 of fragment 3 of Branch created at site S1 might be referred to as
S1.BRANCH.F3.C2

• An approach that resolves these problems uses aliases for each database object

– Thus, S1.BRANCH.F3.C2 might be known as local branch by user at site S1

– DDBMS has task of mapping an alias to appropriate database object

20 www.edutechlearners.com

Promises of DDBSs . . .

• Replication transparency ensures that the user is not involved in the managment of
copies of some data

• The user should even not be aware about the existence of replicas, rather should work
as if there exists a single copy of the data

• Replication of data is needed for various reasons

– e.g., increased efficiency for read-only data access

21 www.edutechlearners.com

Promises of DDBSs . . .

• Fragmentation transparency ensures that the user is not aware of and is not involved
in the fragmentation of the data

• The user is not involved in finding query processing strategies over fragments or
formulating queries over fragments

– The evaluation of a query that is specified over an entire relation but now has to be
performed on top of the fragments requires an appropriate query evaluation strategy

• Fragmentation is commonly done for reasons of performance, availability, and reliability

• Two fragmentation alternatives

– Horizontal fragmentation: divide a relation into a subsets of tuples

– Vertical fragmentation: divide a relation by columns

22 www.edutechlearners.com

Promises of DDBSs . . .

• Transaction transparency ensures that all distributed transactions maintain integrity
and consistency of the DDB and support concurrency

• Each distributed transaction is divided into a number of sub-transactions (a
sub-transaction for each site that has relevant data) that concurrently access data at
different locations

• DDBMS must ensure the indivisibility of both the global transaction and each of the
sub-transactions

• Can be further divided into

– Concurrency transparency

– Failure transparency

23 www.edutechlearners.com

Promises of DDBSs . . .

• Concurrency transparency guarantees that transactions must execute independently
and are logically consistent, i.e., executing a set of transactions in parallel gives the
same result as if the transactions were executed in some arbitrary serial order.

• Same fundamental principles as for centralized DBMS, but more complicated to realize:

– DDBMS must ensure that global and local transactions do not interfere with each
other

– DDBMS must ensure consistency of all sub-transactions of global transaction

• Replication makes concurrency even more complicated

– If a copy of a replicated data item is updated, update must be propagated to all copies

– Option 1: Propagate changes as part of original transaction, making it an atomic
operation; however, if one site holding a copy is not reachable, then the transaction is
delayed until the site is reachable.

– Option 2: Limit update propagation to only those sites currently available; remaining
sites are updated when they become available again.

– Option 3: Allow updates to copies to happen asynchronously, sometime after the
original update; delay in regaining consistency may range from a few seconds to
several hours

24 www.edutechlearners.com

Promises of DDBSs . . .

• Failure transparency: DDBMS must ensure atomicity and durability of the global
transaction, i.e., the sub-transactions of the global transaction either all commit or all
abort.

• Thus, DDBMS must synchronize global transaction to ensure that all sub-transactions
have completed successfully before recording a final COMMIT for the global transaction

• The solution should be robust in presence of site and network failures

25 www.edutechlearners.com

Promises of DDBSs . . .

• Performance transparency: DDBMS must perform as if it were a centralized DBMS

– DDBMS should not suffer any performance degradation due to the distributed
architecture

– DDBMS should determine most cost-effective strategy to execute a request

• Distributed Query Processor (DQP) maps data request into an ordered sequence of
operations on local databases

• DQP must consider fragmentation, replication, and allocation schemas

• DQP has to decide:

– which fragment to access

– which copy of a fragment to use

– which location to use

• DQP produces execution strategy optimized with respect to some cost function

• Typically, costs associated with a distributed request include: I/O cost, CPU cost, and
communication cost

26 www.edutechlearners.com

Complicating Factors

• Complexity

• Cost

• Security

• Integrity control more difficult

• Lack of standards

• Lack of experience

• Database design more complex

27 www.edutechlearners.com

Technical Problems to be Studied . . .

• Distributed database design

– How to fragment the data?

– Partitioned data vs. replicated data?

• Distributed query processing

– Design algorithms that analyze queries and convert them into a series of data
manipulation operations

– Distribution of data, communication costs, etc. has to be considered

– Find optimal query plans

• Distributed directory management

• Distributed concurrency control

– Synchronization of concurrent accesses such that the integrity of the DB is
maintained

– Integrity of multiple copies of (parts of) the DB have to be considered (mutual
consistency)

• Distributed deadlock management

– Deadlock management: prevention, avoidance, detection/recovery

28 www.edutechlearners.com

Technical Problems to be Studied . . .

• Reliability

– How to make the system resilient to failures

– Atomicity and Durability

• Heterogeneous databases

– If there is no homogeneity among the DBs at various sites either in terms of the way
data is logically structured (data model) or in terms of the access mechanisms
(language), it becomes necessary to provide translation mechanisms

29 www.edutechlearners.com

Conclusion

• A distributed database (DDB) is a collection of multiple, logically interrelated databases
distributed over a computer network

• Data stored at a number of sites, the sites are connected by a network. DDB supports
the relational model. DDB is not a remote file system

• Transparent system ‘hides’ the implementation details from the users

– Distribution transparency

– Network transparency

– Transaction transparency

– Performance transparency

• Programming a distributed database involves:

– Distributed database design

– Distributed query processing

– Distributed directory management

– Distributed concurrency control

– Distributed deadlock management

– Reliability

30 www.edutechlearners.com

Chapter 2: DDBMS Architecture

• Definition of the DDBMS Architecture

• ANSI/SPARC Standard

• Global, Local, External, and Internal Schemas, Example

• DDBMS Architectures

• Components of the DDBMS

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of this course.

31 www.edutechlearners.com

Definition

• Architecture: The architecture of a system defines its structure:

– the components of the system are identified;

– the function of each component is specified;

– the interrelationships and interactions among the components are defined.

• Applies both for computer systems as well as for software systems, e.g,

– division into modules, description of modules, etc.

– architecture of a computer

• There is a close relationship between the architecture of a system, standardisation
efforts, and a reference model.

32 www.edutechlearners.com

Motivation for Standardization of DDBMS Architecture

• DDBMS might be implemented as homogeneous or heterogeneous DDBMS

• Homogeneous DDBMS

– All sites use same DBMS product

– It is much easier to design and manage

– The approach provides incremental growth and allows increased performance

• Heterogeneous DDBMS

– Sites may run different DBMS products, with possibly different underlying data models

– This occurs when sites have implemented their own databases first, and integration is
considered later

– Translations are required to allow for different hardware and/or different DBMS
products

– Typical solution is to use gateways

⇒ A common standard to implement DDBMS is needed!

33 www.edutechlearners.com

Standardization

• The standardization efforts in databases developed reference models of DBMS.

• Reference Model: A conceptual framework whose purpose is to divide standardization
work into manageable pieces and to show at a general level how these pieces are
related to each other.

• A reference model can be thought of as an idealized architectural model of the system.

• Commercial systems might deviate from reference model, still they are useful for the
standardization process

• A reference model can be described according to 3 different approaches:

– component-based

– function-based

– data-based

34 www.edutechlearners.com

Standardization . . .

• Components-based

– Components of the system are defined together with the interrelationships between
the components

– Good for design and implementation of the system

– It might be difficult to determine the functionality of the system from its components

35 www.edutechlearners.com

Standardization . . .

• Function-based

– Classes of users are identified together with the functionality that the system will
provide for each class

– Typically a hierarchical system with clearly defined interfaces between different layers

– The objectives of the system are clearly identified.

– Not clear how to achieve the objectives

– Example: ISO/OSI architecture of computer networks

36 www.edutechlearners.com

Standardization . . .

• Data-based

– Identify the different types of the data and specify the functional units that will realize
and/or use data according to these views

– Gives central importance to data (which is also the central resource of any DBMS)
→ Claimed to be the preferable choice for standardization of DBMS

– The full architecture of the system is not clear without the description of functional
modules.

– Example: ANSI/SPARC architecture of DBMS

37 www.edutechlearners.com

Standardization . . .

• The interplay among the 3 approaches is important:

– Need to be used together to define an architectural model

– Each brings a different point of view and serves to focus on different aspects of the
model

38 www.edutechlearners.com

ANSI/SPARC Architecture of DBMS

• ANSI/SPARC architecture is based on data

• 3 views of data: external view, conceptual view, internal view

• Defines a total of 43 interfaces between these views

39 www.edutechlearners.com

Example

• Conceptual schema: Provides enterprise view of entire database

RELATION EMP [
KEY = {ENO}
ATTRIBUTES = {
ENO : CHARACTER(9)
ENAME: CHARACTER(15)
TITLE: CHARACTER(10)

}
]

RELATION PAY [
KEY = {TITLE}
ATTRIBUTES = {
TITLE: CHARACTER(10)
SAL : NUMERIC(6)

}
]

RELATION PROJ [
KEY = {PNO}
ATTRIBUTES = {
PNO : CHARACTER(7)
PNAME : CHARACTER(20)
BUDGET: NUMERIC(7)
LOC : CHARACTER(15)

]

RELATION ASG [
KEY = {ENO,PNO}
ATTRIBUTES = {
ENO : CHARACTER(9)
PNO : CHARACTER(7)
RESP: CHARACTER(10)
DUR : NUMERIC(3)

}
]

40 www.edutechlearners.com

Example . . .

• Internal schema: Describes the storage details of the relations.

– Relation EMP is stored on an indexed file

– Index is defined on the key attribute ENO and is called EMINX

– A HEADER field is used that might contain flags (delete, update, etc.)

INTERNAL REL EMPL [
INDEX ON E# CALL EMINX
FIELD =
HEADER: BYTE(1)
E# : BYTE(9)
ENAME : BYTE(15)
TIT : BYTE(10)

]

Conceptual schema:
RELATION EMP [

KEY = {ENO}
ATTRIBUTES = {
ENO : CHARACTER(9)
ENAME: CHARACTER(15)
TITLE: CHARACTER(10)

}
]

41 www.edutechlearners.com

Example . . .

• External view: Specifies the view of different users/applications

– Application 1: Calculates the payroll payments for engineers

CREATE VIEW PAYROLL (ENO, ENAME, SAL) AS
SELECT EMP.ENO,EMP.ENAME,PAY.SAL
FROM EMP, PAY
WHERE EMP.TITLE = PAY.TITLE

– Application 2: Produces a report on the budget of each project

CREATE VIEW BUDGET(PNAME, BUD) AS
SELECT PNAME, BUDGET
FROM PROJ

42 www.edutechlearners.com

Architectural Models for DDBMSs

• Architectural Models for DDBMSs (or more generally for multiple DBMSs) can be
classified along three dimensions:

– Autonomy

– Distribution

– Heterogeneity

43 www.edutechlearners.com

Architectural Models for DDBMSs . . .

• Autonomy: Refers to the distribution of control (not of data) and indicates the degree to
which individual DBMSs can operate independently.

– Tight integration: a single-image of the entire database is available to any user who
wants to share the information (which may reside in multiple DBs); realized such that
one data manager is in control of the processing of each user request.

– Semiautonomous systems: individual DBMSs can operate independently, but have
decided to participate in a federation to make some of their local data sharable.

– Total isolation: the individual systems are stand-alone DBMSs, which know neither of
the existence of other DBMSs nor how to comunicate with them; there is no global
control.

• Autonomy has different dimensions

– Design autonomy : each individual DBMS is free to use the data models and
transaction management techniques that it prefers.

– Communication autonomy : each individual DBMS is free to decide what information
to provide to the other DBMSs

– Execution autonomy : each individual DBMS can execture the transactions that are
submitted to it in any way that it wants to.

44 www.edutechlearners.com

Architectural Models for DDBMSs . . .

• Distribution: Refers to the physical distribution of data over multiple sites.

– No distribution: No distribution of data at all

– Client/Server distribution:

∗ Data are concentrated on the server, while clients provide application
environment/user interface

∗ First attempt to distribution

– Peer-to-peer distribution (also called full distribution):

∗ No distinction between client and server machine
∗ Each machine has full DBMS functionality

45 www.edutechlearners.com

Architectural Models for DDBMSs . . .

• Heterogeneity: Refers to heterogeneity of the components at various levels

– hardware

– communications

– operating system

– DB components (e.g., data model, query language, transaction management
algorithms)

46 www.edutechlearners.com

Architectural Models for DDBMSs . . .

47 www.edutechlearners.com

Client-Server Architecture for DDBMS (Data-based)

• General idea: Divide the functionality into two
classes:

– server functions
∗ mainly data management, including

query processing, optimization, transac-
tion management, etc.

– client functions
∗ might also include some data manage-

ment functions (consistency checking,
transaction management, etc.) not just
user interface

• Provides a two-level architecture

• More efficient division of work

• Different types of client/server architecture

– Multiple client/single server

– Multiple client/multiple server

48 www.edutechlearners.com

Peer-to-Peer Architecture for DDBMS (Data-based)

• Local internal schema (LIS)

– Describes the local physical data or-
ganization (which might be different
on each machine)

• Local conceptual schema (LCS)

– Describes logical data organization
at each site

– Required since the data are frag-
mented and replicated

• Global conceptual schema (GCS)

– Describes the global logical view of
the data

– Union of the LCSs

• External schema (ES)

– Describes the user/application view
on the data

49 www.edutechlearners.com

Multi-DBMS Architecture (Data-based)

• Fundamental difference to peer-to-peer DBMS is in the definition of the global
conceptual schema (GCS)

– In a MDBMS the GCS represents only the collection of some of the local databases
that each local DBMS want to share.

• This leads to the question, whether the GCS should even exist in a MDBMS?

• Two different architecutre models:

– Models with a GCS

– Models without GCS

50 www.edutechlearners.com

Multi-DBMS Architecture (Data-based) . . .

• Model with a GCS

– GCS is the union of parts of the LCSs

– Local DBMS define their own views on the local DB

51 www.edutechlearners.com

Multi-DBMS Architecture (Data-based) . . .

• Model without a GCS

– The local DBMSs present to the multi-database layer the part of their local DB they
are willing to share.

– External views are defined on top of LCSs

52 www.edutechlearners.com

Regular DBMS (Component-based)

53 www.edutechlearners.com

General DDBMS (Component-based)

54 www.edutechlearners.com

Client-Server Architecture (Component-based)

• One server, many clients

55 www.edutechlearners.com

Components of Client-Server Architecture (Component-based)

• Many servers, many clients

56 www.edutechlearners.com

Components of Client-Server Architecture (Component-based) . . .

• Many servers, many clients

57 www.edutechlearners.com

Components of Peer-to-Peer Architecture (Component-based)

58 www.edutechlearners.com

Components of Multi-DBMS Architecture (Component-based)

59 www.edutechlearners.com

Conclusion

• Architecture defines the structure of the system. There are three ways to define the
architecture: based on components, functions, or data

• DDBMS might be based on identical components (homogeneous systems) or different
components (heterogeneous systems)

• ANSI/SPARC architecture defines external, conceptual, and internal schemas

• There are three orthogonal implementation dimensions for DDBMS: level of distribution,
autonomity, and heterogeinity

• Different architectures are discussed:

– Client-Server Systems

– Peer-to-Peer Systems

– Multi-DBMS

60 www.edutechlearners.com

Chapter 3: Distributed Database Design

• Design problem

• Design strategies(top-down, bottom-up)

• Fragmentation

• Allocation and replication of fragments, optimality, heuristics

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of this course.

61 www.edutechlearners.com

Design Problem

• Design problem of distributed systems: Making decisions about the placement of
data and programs across the sites of a computer network as well as possibly
designing the network itself.

• In DDBMS, the distribution of applications involves

– Distribution of the DDBMS software

– Distribution of applications that run on the database

• Distribution of applications will not be considered in the following; instead the distribution
of data is studied.

62 www.edutechlearners.com

Framework of Distribution

• Dimension for the analysis of distributed systems

– Level of sharing: no sharing, data sharing, data + program sharing

– Behavior of access patterns: static, dynamic

– Level of knowledge on access pattern behavior: no information, partial information,
complete information

• Distributed database design should be considered within this general framework.

63 www.edutechlearners.com

Design Strategies

• Top-down approach

– Designing systems from scratch

– Homogeneous systems

• Bottom-up approach

– The databases already exist at a number of sites

– The databases should be connected to solve common tasks

64 www.edutechlearners.com

Design Strategies . . .

• Top-down design strategy

65 www.edutechlearners.com

Design Strategies . . .

• Distribution design is the central part of the design in DDBMSs (the other tasks are
similar to traditional databases)

– Objective: Design the LCSs by distributing the entities (relations) over the sites

– Two main aspects have to be designed carefully

∗ Fragmentation
· Relation may be divided into a number of sub-relations, which are distributed

∗ Allocation and replication
· Each fragment is stored at site with ”optimal” distribution
· Copy of fragment may be maintained at several sites

• In this chapter we mainly concentrate on these two aspects

• Distribution design issues

– Why fragment at all?

– How to fragment?

– How much to fragment?

– How to test correctness?

– How to allocate?

66 www.edutechlearners.com

Design Strategies . . .

• Bottom-up design strategy

67 www.edutechlearners.com

Fragmentation

• What is a reasonable unit of distribution? Relation or fragment of relation?

• Relations as unit of distribution:

– If the relation is not replicated, we get a high volume of remote data accesses.

– If the relation is replicated, we get unnecessary replications, which cause problems in
executing updates and waste disk space

– Might be an Ok solution, if queries need all the data in the relation and data stays at
the only sites that uses the data

• Fragments of relationas as unit of distribution:

– Application views are usually subsets of relations

– Thus, locality of accesses of applications is defined on subsets of relations

– Permits a number of transactions to execute concurrently, since they will access
different portions of a relation

– Parallel execution of a single query (intra-query concurrency)

– However, semantic data control (especially integrity enforcement) is more difficult

⇒ Fragments of relations are (usually) the appropriate unit of distribution.

68 www.edutechlearners.com

Fragmentation . . .

• Fragmentation aims to improve:

– Reliability

– Performance

– Balanced storage capacity and costs

– Communication costs

– Security

• The following information is used to decide fragmentation:

– Quantitative information: frequency of queries, site, where query is run, selectivity of
the queries, etc.

– Qualitative information: types of access of data, read/write, etc.

69 www.edutechlearners.com

Fragmentation . . .

• Types of Fragmentation

– Horizontal: partitions a relation along its tuples

– Vertical: partitions a relation along its attributes

– Mixed/hybrid: a combination of horizontal and vertical fragmentation

(a) Horizontal Fragmentation

(b) Vertical Fragmentation (c) Mixed Fragmentation

70 www.edutechlearners.com

Fragmentation . . .

• Exampe

Data E-R Diagram

71 www.edutechlearners.com

Fragmentation . . .

• Example (contd.): Horizontal fragmentation of PROJ relation

– PROJ1: projects with budgets less than 200, 000

– PROJ2: projects with budgets greater than or equal to 200, 000

72 www.edutechlearners.com

Fragmentation . . .

• Example (contd.): Vertical fragmentation of PROJ relation

– PROJ1: information about project budgets

– PROJ2: information about project names and locations

73 www.edutechlearners.com

If relation R is decomposed into fragments R1,R2,...,Rn, then there should exist

some relational operator ∇ that reconstructs R from its fragments, i.e.,
R=R1 ∇ ...∇ Rn
∗

Correctness Rules of Fragmentation

• Completeness

– Decomposition of relation R into fragments R1, R2, . . . , Rn is complete iff each
data item in R can also be found in some Ri.

• Reconstruction

–

Union to combine horizontal fragments
∗ Join to combine vertical fragments

• Disjointness

– If relation R is decomposed into fragments R1, R2, . . . , Rn and data item di

appears in fragment Rj , then di should not appear in any other fragment Rk, k 6= j
(exception: primary key attribute for vertical fragmentation)

∗ For horizontal fragmentation, data item is a tuple
∗ For vertical fragmentation, data item is an attribute

74 www.edutechlearners.com

Horizontal Fragmentation

• Intuition behind horizontal fragmentation

– Every site should hold all information that is used to query at the site

– The information at the site should be fragmented so the queries of the site run faster

• Horizontal fragmentation is defined as selection operation, σ (R)

• Example:

σBUDGET<200000(PROJ)

σBUDGET≥200000(PROJ)

75 www.edutechlearners.com

Horizontal Fragmentation . . .

• Computing horizontal fragmentation (idea)

– Compute the frequency of the individual queries of the site q1, . . . , qQ

– Rewrite the queries of the site in the conjunctive normal form (disjunction of
conjunctions); the conjunctions are called minterms.

– Compute the selectivity of the minterms

– Find the minimal and complete set of minterms (predicates)

∗ The set of predicates is complete if and only if any two tuples in the same fragment
are referenced with the same probability by any application

∗ The set of predicates is minimal if and only if there is at least one query that
accesses the fragment

– There is an algorithm how to find these fragments algorithmically (the algorithm
CON MIN and PHORIZONTAL (pp 120-122) of the textbook of the course)

76 www.edutechlearners.com

Horizontal Fragmentation . . .

• Example: Fragmentation of the PROJ relation

– Consider the following query: Find the name and budget of projects given their PNO.

– The query is issued at all three sites

– Fragmentation based on LOC, using the set of predicates/minterms
{LOC =′ Montreal′, LOC =′ NewY ork′, LOC =′ Paris′}

PROJ1 = σLOC=′Montreal′(PROJ)

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

PROJ2 = σLOC=′NewY ork′(PROJ)

PNO PNAME BUDGET LOC

P2 Database Develop. 135000 New York

P3 250000 New York

PROJ3 = ()

PNO PNAME BUDGET LOC

P4 Maintenance 310000 Paris

• If access is only according to the location, the above set of predicates is complete

– i.e., each tuple of each fragment PROJi has the same probability of being accessed

• If there is a second query/application to access only those project tuples where the
budget is less than $200000, the set of predicates is not complete.

– P2 in PROJ2 has higher probability to be accessed

77 www.edutechlearners.com

Horizontal Fragmentation . . .

• Example (contd.):

– Add BUDGET ≤ 200000 and BUDGET > 200000 to the set of predicates
to make it complete.
⇒ {LOC =′ Montreal′, LOC =′ NewY ork′, LOC =′ Paris′,

BUDGET ≥ 200000, BUDGET < 200000} is a complete set

– Minterms to fragment the relation are given as follows:

(=) (200000)

(LOC = Montreal) ∧ (BUDGET > 200000)

(LOC =′ NewY ork′) ∧ (BUDGET ≤ 200000)

(LOC =′ NewY ork′) ∧ (BUDGET > 200000)

(LOC =′ Paris′) ∧ (BUDGET ≤ 200000)

(LOC =′ Paris′) ∧ (BUDGET > 200000)

78 www.edutechlearners.com

Horizontal Fragmentation . . .

• Example (contd.): Now, PROJ2 will be split in two fragments

PROJ1 = σLOC=′Montreal′(PROJ)

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

PROJ2 = σLOC=′NY ′∧BUDGET<200000(PROJ)

PNO PNAME BUDGET LOC

P2 Database Develop. 135000 New York

PROJ3 = ()

PNO PNAME BUDGET LOC

P4 Maintenance 310000 Paris

= 0000(PROJ)

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

– PROJ1 and PROJ2 would have been split in a similar way if tuples with budgets
smaller and greater than 200.000 would be stored

79 www.edutechlearners.com

Horizontal Fragmentation . . .

• In most cases intuition can be used to build horizontal partitions. Let {t1, t2, t3},
{t4, t5}, and {t2, t3, t4, t5} be query results. Then tuples would be fragmented in the
following way:

t1 t2 t3 t4 t5

80 www.edutechlearners.com

Vertical Fragmentation

• Objective of vertical fragmentation is to partition a relation into a set of smaller relations
so that many of the applications will run on only one fragment.

• Vertical fragmentation of a relation R produces fragments R1, R2, . . . , each of which
contains a subset of R’s attributes.

• Vertical fragmentation is defined using the projection operation of the relational
algebra:

• Example:

PROJ1 = ΠPNO,BUDGET (PROJ)

PROJ2 = ΠPNO,PNAME,LOC(PROJ)

• Vertical fragmentation has also been studied for (centralized) DBMS

– Smaller relations, and hence less page accesses

– e.g., MONET system

81 www.edutechlearners.com

Vertical Fragmentation . . .

• Vertical fragmentation is inherently more complicated than horizontal fragmentation

– In horizontal partitioning: for n simple predicates, the number of possible minterms is
2n; some of them can be ruled out by existing implications/constraints.

– In vertical partitioning: for m non-primary key attributes, the number of possible
fragments is equal to B(m) (= the mth Bell number), i.e., the number of partitions of
a set with m members.

∗ For large numbers, B(m) ≈ mm (e.g., B(15) = 109)

• Optimal solutions are not feasible, and heuristics need to be applied.

82 www.edutechlearners.com

Vertical Fragmentation . . .

• Two types of heuristics for vertical fragmentation exist:

– Grouping: assign each attribute to one fragment, and at each step, join some of the
fragments until some criteria is satisfied.

∗ Bottom-up approach

– Splitting: starts with a relation and decides on beneficial partitionings based on the
access behaviour of applications to the attributes.

∗ Top-down approach
∗ Results in non-overlapping fragments
∗ “Optimal” solution is probably closer to the full relation than to a set of small

relations with only one attribute
∗ Only vertical fragmentation is considered here

83 www.edutechlearners.com

Vertical Fragmentation . . .

• Application information: The major information required as input for vertical
fragmentation is related to applications

–

– This information is obtained from queries and collected in the Attribute Usage Matrix
and Attribute Affinity Matrix.

Since vertical fragmentation places in one fragment those attributes usually accessed
together, there is a need for some measure that would define more precidely the
notion of "togertherness",i.e., how closely related the attributes are.

84 www.edutechlearners.com

Vertical Fragmentation . . .

• Given are the user queries/applications Q = (q1, . . . , qq) that will run on relation
R(A1, . . . , An)

• Attribute Usage Matrix: Denotes which query uses which attribute:

use(qi, Aj) =

{

1 iff qi uses Aj

0 otherwise

– The use(qi, •) vectors for each application are easy to define if the designer knows
the applications that willl run on the DB (consider also the 80-20 rule)

85 www.edutechlearners.com

Vertical Fragmentation . . .

• Example: Consider the following relation:

PROJ(PNO, PNAME, BUDGET, LOC)

and the following queries:

q1 = SELECT BUDGET FROM PROJ WHERE PNO=Value

q2 = SELECT PNAME,BUDGET FROM PROJ

q3 = SELECT PNAME FROM PROJ WHERE LOC=Value

q = SELECT SUM(BUDGET) FROM PROJ WHERE LOC =Value

• Lets abbreviate A1 = PNO, A2 = PNAME, A3 = BUDGET, A4 = LOC

• Attribute Usage Matrix

86 www.edutechlearners.com

Vertical Fragmentation . . .

• Attribute Affinity Matrix: Denotes the frequency of two attributes Ai and Aj with
respect to a set of queries Q = (q1, . . . , qn):

aff (Ai, Aj) =
∑

(
∑

ref l(qk)accl(qk))

where

– ref l(qk) is the cost (= number of accesses to (Ai, Aj)) of query qK at site l

– accl(qk) is the frequency of query qk at site l

87 www.edutechlearners.com

Vertical Fragmentation . . .

• Example (contd.): Let the cost of each query be ref l(qk) = 1, and the frequency
accl(qk) of the queries be as follows:

Site1 Site2 Site3

acc1(q1) = 15 acc2(q1) = 20 acc3(q1) = 10

acc1(q2) = 5 acc2(q2) = 0 acc3(q2) = 0

acc1(q3) = 25 acc2(q3) = 25 acc3(q3) = 25

acc1(q4) = 3 acc2(q4) = 0 acc3(q4) = 0

• Attribute affinity matrix aff (A , A) =

– e.g., aff (A1, A3) =
∑

1

k=1

∑

3

l=1
accl(qk) = acc1(q1) + acc2(q1) + acc3(q1) = 45

(q1 is the only query to access both A1 and A3)

88 www.edutechlearners.com

Vertical Fragmentation . . .

• Take the attribute affinity matrix (AA) and reorganize the attribute orders to form clusters
where the attributes in each cluster demonstrate high affinity to one another.

• Bond energy algorithm (BEA) has been suggested to be useful for that purpose for
several reasons:

– It is designed specifically to determine groups of similar items as opposed to a linear
ordering of the items.

– The final groupings are insensitive to the order in which items are presented.

– The computation time is reasonable (O(n2), where n is the number of attributes)

• BEA:

– Input: AA matrix

– Output: Clustered AA matrix (CA)

– Permutation is done in such a way to maximize the following global affinity mesaure
(affinity of Ai and Aj with their neighbors):

AM =
n

∑

i=1

n
∑

j=1

aff(Ai, Aj)[aff(Ai, Aj−1) + aff(Ai, Aj+1) +

aff(Ai−1, Aj) + aff(Ai+1, Aj)]

89 www.edutechlearners.com

Vertical Fragmentation . . .

• Example (contd.): Attribute Affinity Matrix CA after running the BEA

– Elements with similar values are grouped together, and two clusters can be identified

– An additional partitioning algorithm is needed to identify the clusters in CA

∗ Usually more clusters and more than one candidate partitioning, thus additional
steps are needed to select the best clustering.

– The resulting fragmentation after partitioning (PNO is added in PROJ2 explicilty
as key):

PROJ1 = {PNO, BUDGET}

PROJ2 = {PNO, PNAME, LOC}

90 www.edutechlearners.com

Correctness of Vertical Fragmentation

• Relation R is decomposed into fragments R1, R2, . . . , Rn

– e.g., PROJ = {PNO, BUDGET, PNAME, LOC} into
PROJ1 = {PNO, BUDGET} and PROJ2 = {PNO, PNAME, LOC}

• Completeness

– Guaranteed by the partitioning algortihm, which assigns each attribute in A to one
partition

• Reconstruction

– Join to reconstruct vertical fragments

– R = R1 ⋊⋉ · · · ⋊⋉ Rn = PROJ1 ⋊⋉ PROJ2

• Disjointness

– Attributes have to be disjoint in VF. Two cases are distinguished:

∗ If tuple IDs are used, the fragments are really disjoint
∗ Otherwise, key attributes are replicated automatically by the system
∗ e.g., PNO in the above example

91 www.edutechlearners.com

Mixed Fragmentation

• In most cases simple horizontal or vertical fragmentation of a DB schema will not be
sufficient to satisfy the requirements of the applications.

• Mixed fragmentation (hybrid fragmentation): Consists of a horizontal fragment
followed by a vertical fragmentation, or a vertical fragmentation followed by a horizontal
fragmentation

• Fragmentation is defined using the selection and projection operations of relational
algebra:

σp(ΠA1,...,An(R))

ΠA1,...,An(σp(R))

92 www.edutechlearners.com

Replication and Allocation

• Replication: Which fragements shall be stored as multiple copies?

– Complete Replication

∗ Complete copy of the database is maintained in each site

– Selective Replication

∗ Selected fragments are replicated in some sites

• Allocation: On which sites to store the various fragments?

– Centralized

∗ Consists of a single DB and DBMS stored at one site with users distributed across
the network

– Partitioned

∗ Database is partitioned into disjoint fragments, each fragment assigned to one site

93 www.edutechlearners.com

Replication . . .

• Replicated DB

– fully replicated: each fragment at each site

– partially replicated: each fragment at some of the sites

• Non-replicated DB (= partitioned DB)

– partitioned: each fragment resides at only one site

• Rule of thumb:

– If
read only queries
update queries ≥ 1, then replication is advantageous, otherwise replication may

cause problems

94 www.edutechlearners.com

Replication . . .

• Comparison of replication alternatives

95 www.edutechlearners.com

Fragment Allocation

• Fragment allocation problem

– Given are:
– fragments F = {F1, F2, ..., Fn}

– network sites S = {S1, S2, ..., Sm}

– and applications Q = {q1, q2, ..., ql}

– Find: the ”optimal” distribution of F to S

• Optimality

– Minimal cost

∗ Communication + storage + processing (read and update)
∗ Cost in terms of time (usually)

– Performance

∗ Response time and/or throughput

– Constraints

∗ Per site constraints (storage and processing)

96 www.edutechlearners.com

Fragment Allocation . . .

• Required information

– Database Information

∗ selectivity of fragments
∗ size of a fragment

– Application Information

∗ RRij : number of read accesses of a query qi to a fragment Fj

∗ UR : number of update accesses of query q to a fragment F
∗ uij : a matrix indicating which queries updates which fragments,
∗ rij : a similar matrix for retrievals
∗ originating site of each query

– Site Information

∗ USCk: unit cost of storing data at a site Sk

∗ LPCk: cost of processing one unit of data at a site Sk

– Network Information

∗ communication cost/frame between two sites
∗ frame size

97 www.edutechlearners.com

Fragment Allocation . . .

• We present an allocation model which attempts to

– minimize the total cost of processing and storage

– meet certain response time restrictions

• General Form:

min(Total Cost)

– subject to

∗ response time constraint
∗ storage constraint
∗ processing constraint

• Functions for the total cost and the constraints are presented in the next slides.

• Decision variable xij

xij =

{

1 if fragment Fi is stored at site Sj

0 otherwise

98 www.edutechlearners.com

Fragment Allocation . . .

• The total cost function has two components: storage and query processing.

TOC =
∑

Sk∈S

∑

Fj∈F

STCjk +
∑

qi∈Q

QPCi

– Storage cost of fragment Fj at site Sk:

where USCk is the unit storage cost at site k

– Query processing cost for a query qi is composed of two components:

∗ composed of processing cost (PC) and transmission cost (TC)

QPCi = PCi + TCi

99 www.edutechlearners.com

Fragment Allocation . . .

• Processing cost is a sum of three components:

– access cost (AC), integrity contraint cost (IE), concurency control cost (CC)

PCi = ACi + IEi + CCi

– Access cost:

ACi =
∑

sk∈S

∑

Fj∈F

(URij + RRij) ∗ xij ∗ LPCk

where LPCk is the unit process cost at site k

– Integrity and concurrency costs:

∗ Can be similarly computed, though depends on the specific constraints

• Note: ACi assumes that processing a query involves decomposing it into a set of
subqueries, each of which works on a fragment, ...,

– This is a very simplistic model

– Does not take into consideration different query costs depending on the operator or
different algorithms that are applied

100 www.edutechlearners.com

Fragment Allocation . . .

• The transmission cost is composed of two components:

– Cost of processing updates (TCU) and cost of processing retrievals (TCR)

TCi = TCUi + TCRi

– Cost of updates:

∗ Inform all the sites that have replicas + a short confirmation message back

TCUi =
∑

Sk∈S

∑

Fj∈F

u (update message cost + acknowledgment cost)

– Retrieval cost:

∗ Send retrieval request to all sites that have a copy of fragments that are needed +
sending back the results from these sites to the originating site.

TCRi =
∑

Fj∈F

min
Sk∈S

∗(cost of retrieval request + cost of sending back the result)

101 www.edutechlearners.com

Fragment Allocation . . .

• Modeling the constraints

– Response time constraint for a query qi

execution time of qi ≤ max. allowable response time for qi

– Storage constraints for a site Sk

Fj∈F

storage requirement of F at S storage capacity of Sk

– Processing constraints for a site Sk

∑

qi∈Q

processing load of qi at site Sk ≤ processing capacity ofSk

102 www.edutechlearners.com

Fragment Allocation . . .

• Solution Methods

– The complexity of this allocation model/problem is NP-complete

– Correspondence between the allocation problem and similar problems in other areas

∗ Plant location problem in operations research
∗ Knapsack problem
∗ Network flow problem

– Hence, solutions from these areas can be re-used

– Use different heuristics to reduce the search space

∗ Assume that all candidate partitionings have been determined together with their
associated costs and benefits in terms of query processing.
· The problem is then reduced to find the optimal partitioning and placement for

each relation
∗ Ignore replication at the first step and find an optimal non-replicated solution

· Replication is then handeled in a second step on top of the previous
non-replicated solution.

103 www.edutechlearners.com

Conclusion

• Distributed design decides on the placement of (parts of the) data and programs across
the sites of a computer network

• On the abstract level there are two patterns: Top-down and Bottom-up

• On the detail level design answers two key questions: fragmentation and
allocation/replication of data

– Horizontal fragmentation is defined via the selection operation σp(R)
∗ Rewrites the queries of each site in the conjunctive normal form and finds a

minimal and complete set of conjunctions to determine fragmentation

– Vertical fragmentation via the projection operation πA(R)
∗ Computes the attribute affinity matrix and groups “similar” attributes together

– Mixed fragmentation is a combination of both approaches

• Allocation/Replication of data

– Type of replication: no replication, partial replication, full replication

– Optimal allocation/replication modelled as a cost function under a set of constraints

– The complexity of the problem is NP-complete

– Use of different heuristics to reduce the complexity

104 www.edutechlearners.com

Chapter 4: Semantic Data Control

• View management

• Security control

• Integrity control

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of the last year course.

105 www.edutechlearners.com

Semantic Data Control

• Semantic data control typically includes view management, security control, and
semantic integrity control.

• Informally, these functions must ensure that authorized users perform correct
operations on the database, contributing to the maintenance of database integrity.

• In RDBMS semantic data control can be achieved in a uniform way

– views, security constraints, and semantic integrity constraints can be defined as rules
that the system automatically enforces

106 www.edutechlearners.com

View Management

• Views enable full logical data independence

• Views are virtual relations that are defined as the result of a query on base relations

• Views are typically not materialized

– Can be considered a dynamic window that reflects all relevant updates to the
database

• Views are very useful for ensuring data security in a simple way

– By selecting a subset of the database, views hide some data

– Users cannot see the hidden data

107 www.edutechlearners.com

View Management in Centralized Databases

• A view is a relation that is derived from a base relation via a query.

• It can involve selection, projection, aggregate functions, etc.

• Example: The view of system analysts derived from relation EMP

CREATE VIEW SYSAN(ENO,ENAME) AS
SELECT ENO,ENAME
FROM EMP
WHERE TITLE="Syst. Anal."

108 www.edutechlearners.com

View Management in Centralized Databases . . .

• Queries expressed on views are translated into queries expressed on base relations

• Example: “Find the names of all the system analysts with their project number and
responsibility?”

– Involves the view SYSAN and the relation ASG(ENO,PNO,RESP,DUR)

SELECT ENAME, PNO, RESP
FROM SYSAN, ASG
WHERE SYSN.ENO = ASG.ENO

is translated into

SELECT ENAME,PNO,RESP
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
AND TITLE = "Syst. Anal."

• Automatic query modification is required, i.e., ANDing query qualification with view
qualification

109 www.edutechlearners.com

View Management in Centralized Databases . . .

• All views can be queried as base relations, but not all view can be updated as such

– Updates through views can be handled automatically only if they can be propagated
correctly to the base relations

– We classify views as updatable or not-updatable

• Updatable view: The updates to the view can be propagated to the base relations
without ambiguity.

CREATE VIEW SYSAN(ENO,ENAME) AS
SELECT ENO,ENAME
FROM EMP
WHERE TITLE="Syst. Anal."

– e.g, insertion of tuple (201,Smith) can be mapped into the insertion of a new
employee (201, Smith, “Syst. Anal.”)

– If attributes other than TITLE were hidden by the view, they would be assigned the
value null

110 www.edutechlearners.com

View Management in Centralized Databases . . .

• Non-updatable view: The updates to the view cannot be propagated to the base
relations without ambiguity.

CREATE VIEW EG(ENAME,RESP) AS
SELECT ENAME,RESP
FROM EMP, ASG
WHERE EMP.ENO=ASG.ENO

– e.g, deletion of (Smith, ”Syst. Anal.”) is ambiguous, i.e., since deletion of “Smith” in
EMP and deletion of “Syst. Anal.” in ASG are both meaningful, but the system cannot
decide.

• Current systems are very restrictive about supportin gupdates through views

– Views can be updated only if they are derived from a single relation by selection and
projection

– However, it is theoretically possible to automatically support updates of a larger class
of views, e.g., joins

111 www.edutechlearners.com

View Management in Distributed Databases

• Definition of views in DDBMS is similar as in centralized DBMS

– However, a view in a DDBMS may be derived from fragmented relations stored at
different sites

• Views are conceptually the same as the base relations, therefore we store them in the
(possibly) distributed directory/catalogue

– Thus, views might be centralized at one site, partially replicated, fully replicated

– Queries on views are translated into queries on base relations, yielding distributed
queries due to possible fragmentation of data

• Views derived from distributed relations may be costly to evaluate

– Optimizations are important, e.g., snapshots

– A snapshot is a static view

∗ does not reflect the updates to the base relations
∗ managed as temporary relations: the only access path is sequential scan
∗ typically used when selectivity is small (no indices can be used efficiently)
∗ is subject to periodic recalculation

112 www.edutechlearners.com

Data Security

• Data security protects data against unauthorized acces and has two aspects:

– Data protection

– Authorization control

113 www.edutechlearners.com

Data Protection

• Data protection prevents unauthorized users from understanding the physical content of
data.

• Well established standards exist

– Data encryption standard

– Public-key encryption schemes

114 www.edutechlearners.com

Authorization Control

• Authorization control must guarantee that only authorized users perform operations
they are allowed to perform on the database.

• Three actors are involved in authorization

– users, who trigger the execution of application programms

– operations, which are embedded in applications programs

– database objects, on which the operations are performed

• Authorization control can be viewed as a triple (user, operation type, object) which
specifies that the user has the right to perform an operation of operation type on an
object.

• Authentication of (groups of) users is typically done by username and password

• Authorization control in (D)DBMS is more complicated as in operating systems

– In a file system: data objects are files

– In a DBMS: Data objects are views, (fragments of) relations, tuples, attributes

115 www.edutechlearners.com

Authorization Control . . .

• Grand and revoke statements are used to authorize triplets (user, operation, data object)

– GRANT <operations> ON <object> TO <users>

– REVOKE <operations> ON <object> TO <users>

• Typically, the creator of objects gets all permissions

– Might even have the permission to GRANT permissions

– This requires a recursive revoke process

• Privileges are stored in the directory/catalogue, conceptually as a matrix

EMP ENAME ASG

Casey UPDATE UPDATE UPDATE

Jones SELECT SELECT SELECT WHERE RESP 6= “Manager”

Smith NONE SELECT NONE

• Different materializations of the matrix are possible (by row, by columns, by element),
allowing for different optimizations

– e.g., by row makes the enforcement of authorization efficient, since all rights of a user
are in a single tuple

116 www.edutechlearners.com

Distributed Authorization Control

• Additional problems of authorization control in a distributed environment stem from
the fact that objects and subjects are distributed:

– remote user authentication

– managmenet of distributed authorization rules

– handling of views and of user groups

• Remote user authentication is necessary since any site of a DDBMS may accept
programs initiated and authorized at remote sites

• Two solutions are possible:

– (username, password) is replicated at all sites and are communicated between the
sites, whenever the relations at remote sites are accessed
∗ beneficial if the users move from a site to a site

– All sites of the DDBMS identify and authenticate themselves similarly as users do
∗ intersite communication is protected by the use of the site password;
∗ (username, password) is authorized by application at the start of the session;
∗ no remote user authentication is required for accessing remote relations once the

start site has been authenticated
∗ beneficial if users are static

117 www.edutechlearners.com

Semantic Integrity Constraints

• A database is said to be consistent if it satisfies a set of constraints, called semantic
integrity constraints

• Maintain a database consistent by enforcing a set of constraints is a difficult problem

• Semantic integrity control evolved from procedural methods (in which the controls were
embedded in application programs) to declarative methods

– avoid data dependency problem, code redundancy, and poor performance of the
procedural methods

• Two main types of constraints can be distinguished:

– Structural constraints: basic semantic properties inherent to a data model e.g.,
unique key constraint in relational model

– Behavioral constraints: regulate application behavior e.g., dependencies
(functional, inclusion) in the relational model

• A semantic integrity control system has 2 components:

– Integrity constraint specification

– Integrity constraint enforcement

118 www.edutechlearners.com

Semantic Integrity Constraint Specification

• Integrity constraints specification

– In RDBMS, integrity constraints are defined as assertions, i.e., expression in tuple
relational calculus

– Variables are either universally (∀) or existentially (∃) quantified

– Declarative method

– Easy to define constraints

– Can be seen as a query qualification which is either true or false

– Definition of database consistency clear

– 3 types of integrity constraints/assertions are distinguished:

∗ predefined
∗ precompiled
∗ general constraints

• In the following examples we use the following relations:
EMP(ENO, ENAME, TITLE)
PROJ(PNO, PNAME, BUDGET)
ASG(ENO, PNO, RESP, DUR)

119 www.edutechlearners.com

Semantic Integrity Constraint Specification . . .

• Predefined constraints are based on simple keywords and specify the more common
contraints of the relational model

• Not-null attribute:

– e.g., Employee number in EMP cannot be null
ENO NOT NULL IN EMP

• Unique key:

– e.g., the pair (ENO,PNO) is the unique key in ASG
(ENO, PNO) UNIQUE IN ASG

• Foreign key:

– e.g., PNO in ASG is a foreign key matching the primary key PNO in PROJ
PNO IN ASG REFERENCES PNO IN PROJ

• Functional dependency:

– e.g., employee number functionally determines the employee name
ENO IN EMP DETERMINES ENAME

120 www.edutechlearners.com

Semantic Integrity Constraint Specification . . .

• Precompiled constraints express preconditions that must be satisfied by all tuples in a
relation for a given update type

• General form:
CHECK ON <relation> [WHEN <update type>] <qualification>

• Domain constraint, e.g., constrain the budget:
CHECK ON PROJ(BUDGET>500000 AND BUDGET 1000000)

• Domain constraint on deletion, e.g., only tuples with budget 0 can be deleted:
CHECK ON PROJ WHEN DELETE (BUDGET = 0)

• Transition constraint, e.g., a budget can only increase:
CHECK ON PROJ (NEW.BUDGET > OLD.BUDGET AND

NEW.PNO = OLD.PNO)

– OLD and NEW are implicitly defined variables to identify the tuples that are subject to
update

121 www.edutechlearners.com

Semantic Integrity Constraint Specification . . .

• General constraints may involve more than one relation

• General form:
CHECK ON <variable>:<relation> (<qualification>)

• Functional dependency:
CHECK ON e1:EMP, e2:EMP
(e1.ENAME = e2.ENAME IF e1.ENO = e2.ENO)

• Constraint with aggregate function:
e.g., The total duration for all employees in the CAD project is less than 100
CHECK ON g:ASG, j:PROJ
(SUM(g.DUR WHERE g.PNO=j.PNO) < 100

IF j.PNAME="CAD/CAM")

122 www.edutechlearners.com

Semantic Integrity Constraints Enforcement

• Enforcing semantic integrity constraints consists of rejecting update programs that
violate some integrity constraints

• Thereby, the major problem is to find efficient algorithms

• Two methods to enforce integrity constraints:

– Detection:
1. Execute update u : D → Du

2. If Du is inconsistent then compensate Du → D′
u or undo Du → D

∗ Also called posttest
∗ May be costly if undo is very large

– Prevention:
Execute u : D → Du only if Du will be consistent

∗ Also called pretest
∗ Generally more efficient
∗ Query modification algorithm by Stonebraker (1975) is a preventive method that is

particularly efficient in enforcing domain constraints.
· Add the assertion qualification (constraint) to the update query and check it

immediately for each tuple

123 www.edutechlearners.com

Semantic Integrity Constraints Enforcement . . .

• Example: Consider a query for increasing the budget of CAD/CAM projects by 10%:

UPDATE PROJ
SET BUDGET = BUDGET * 1.1
WHERE PNAME = ‘‘CAD/CAM’’

and the domain constraint

CHECK ON PROJ (BUDGET >= 50K AND BUDGET <= 100K)

The query modification algorithm transforms the query into:

UPDATE PROJ
SET BUDGET = BUDGET * 1.1
WHERE PNAME = ‘‘CAD/CAM’’

AND NEW.BUDGET >= 50K
AND NEW.BUDGET <= 100K

124 www.edutechlearners.com

Distributed Constraints

• Three classes of distributed integrity constraints/assertions are distinguished:

– Individual assertions

∗ Single relation, single variable
∗ Refer only to tuples to be updated independenlty of the rest of the DB
∗ e.g., domain constraints

– Set-oriented assertions

∗ Single relation, multi variable (e.g., functional dependencies)
∗ Multi-relation, multi-variable (e.g., foreign key constraints)
∗ Multiple tuples form possibly different relations are involved

– Assertions involving aggregates

∗ Special, costly processing of aggregates is required

125 www.edutechlearners.com

Distributed Constraints

• Particular difficulties with distributed constraints arise from the fact that relations are
fragmented and replicated:

– Definition of assertions

– Where to store the assertions?

– How to enforce the assertions?

126 www.edutechlearners.com

Distributed Constraints

• Definition and storage of assertions

– The definition of a new integrity assertion can be started at one of the sites that store
the relations involved in the assertion, but needs to be propagated to sites that might
store fragments of that relation.

– Individual assertions

∗ The assertion definition is sent to all other sites that contain fragments of the
relation involved in the assertion.

∗ At each fragment site, check for compatibility of assertion with data
∗ If compatible, store; otherwise reject
∗ If any of the sites rejects, globally reject

– Set-oriented assertions

∗ Involves joins (between fragments or relations)
∗ Maybe necessary to perform joins to check for compatibility
∗ Store if compatible

127 www.edutechlearners.com

Distributed Constraints

• Enforcement of assertions in DDBMS is more complex than in centralized DBMS

• The main problem is to decide where (at which site) to enforce each assertion?

– Depends on type of assertion, type of update, and where update is issued

• Individual assertions

– Update = insert

∗ enforce at the site where the update is issued (i.e., where the user inserts the
tuples)

– Update = delete or modify

∗ Send the assertions to all the sites involved (i.e., where qualified tuples are
updated)

∗ Each site enforce its own assertion

• Set-oriented assertions

– Single relation

∗ Similar to individual assertions with qualified updates

– Multi-relation

∗ Move data between sites to perform joins
∗ Then send the result to the query master site (the site the update is issued)

128 www.edutechlearners.com

Conclusion

• Views enable full logical data independence

– Queries expressed on views are translated into queries expressed on base
relationships

– Views can be updatable and non-updatable

• Three aspects are involved in authorization: (user, operation, data object)

• Semantic integrity constraints maintain database consistency

– Individual assertions are checked at each fragment site, check for compatibility

– Set-oriented assertions involve joins between fragments and optimal enforcement of
the constraints is similar to distributed query optimization

– Constraint detection vs. constraint prevention

129 www.edutechlearners.com

Chapter 5: Overview of Query Processing

• Query Processing Overview

• Query Optimization

• Distributed Query Processing Steps

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of this course.

130 www.edutechlearners.com

Query Processing Overview

• Query processing: A 3-step process that transforms a high-level query (of relational
calculus/SQL) into an equivalent and more efficient lower-level query (of relational
algebra).

1. Parsing and translation

– Check syntax and verify relations.

– Translate the query into an equivalent
relational algebra expression.

2. Optimization

– Generate an optimal evaluation plan
(with lowest cost) for the query plan.

3. Evaluation

– The query-execution engine takes an
(optimal) evaluation plan, executes that
plan, and returns the answers to the
query.

131 www.edutechlearners.com

Query Processing . . .

• The success of RDBMSs is due, in part, to the availability

– of declarative query languages that allow to easily express complex queries without
knowing about the details of the physical data organization and

– of advanced query processing technology that transforms the high-level
user/application queries into efficient lower-level query execution strategies.

• The query transformation should achieve both correctness and efficiency

– The main difficulty is to achieve the efficiency

– This is also one of the most important tasks of any DBMS

• Distributed query processing: Transform a high-level query (of relational
calculus/SQL) on a distributed database (i.e., a set of global relations) into an
equivalent and efficient lower-level query (of relational algebra) on relation fragments.

• Distributed query processing is more complex

– Fragmentation/replication of relations

– Additional communication costs

– Parallel execution

132 www.edutechlearners.com

Query Processing Example

• Example: Transformation of an SQL-query into an RA-query.
Relations: EMP(ENO, ENAME, TITLE), ASG(ENO,PNO,RESP,DUR)
Query: Find the names of employees who are managing a project?

– High level query

SELECT ENAME
FROM EMP,ASG
WHERE EMP.ENO = ASG.ENO AND DUR > 37

– Two possible transformations of the query are:

∗ Expression 1: ΠENAME(σDUR>37∧EMP.ENO=ASG.ENO(EMP × ASG))

∗ Expression 2: ΠENAME(EMP ⋊⋉ENO (σDUR>37(ASG)))

– Expression 2 avoids the expensive and large intermediate Cartesian product, and
therefore typically is better.

133 www.edutechlearners.com

Query Processing Example . . .

• We make the following assumptions about the data fragmentation

– Data is (horizontally) fragmented:

∗ Site1: ASG1 = σENO≤”E3”(ASG)
∗ Site2: ASG2 = σ (ASG)
∗ Site3: EMP1 = σ (EMP)
∗ Site4: EMP2 = σENO>”E3”(EMP)
∗ Site5: Result

– Relations ASG and EMP are fragmented in the same way

– Relations ASG and EMP are locally clustered on attributes RESP and ENO,
respectively

134 www.edutechlearners.com

Query Processing Example . . .

• Now consider the expression ΠENAME(EMP ⋊⋉ENO (σDUR>37(ASG)))

• Strategy 1 (partially parallel execution):

– Produce ASG′
1 and move to Site 3

– Produce ASG′
2 and move to Site 4

– Join ASG′
1 with EMP1 at Site 3 and

move the result to Site 5

– Join ASG′
2 with EMP2 at Site 4 and

move the result to Site 5

– Union the result in Site 5

• Strategy 2:

– Move ASG1 and ASG2 to Site 5

– Move EMP1 and EMP2 to Site 5

– Select and join at Site 5

• For simplicity, the final projection is
omitted.

135 www.edutechlearners.com

Query Processing Example . . .

• Calculate the cost of the two strategies under the following assumptions:

– Tuples are uniformly distributed to the fragments; 20 tuples satisfy DUR>37

– size(EMP) = 400, size(ASG) = 1000

– tuple access cost = 1 unit; tuple transfer cost = 10 units

– ASG and EMP have a local index on DUR and ENO

• Strategy 1

– Produce ASG’s: (10+10) * tuple access cost 20

– Transfer ASG’s to the sites of EMPs: (10+10) * tuple transfer cost 200

– Produce EMP’s: (10+10) * tuple access cost * 2 40

– Transfer EMP’s to result site: (10+10) * tuple transfer cost 200

– Total cost 460

• Strategy 2

– Transfer EMP1, EMP2 to site 5: 400 * tuple transfer cost 4,000

– Transfer ASG1, ASG2 to site 5: 1000 * tuple transfer cost 10,000

– Select tuples from ASG1 ∪ ASG2: 1000 * tuple access cost 1,000

– Join EMP and ASG’: 400 * 20 * tuple access cost 8,000

– Total cost 23,000

136 www.edutechlearners.com

Query Optimization

• Query optimization is a crucial and difficult part of the overall query processing

• Objective of query optimization is to minimize the following cost function:

I/O cost + CPU cost + communication cost

• Two different scenarios are considered:

– Wide area networks

∗ Communication cost dominates
· low bandwidth
· low speed
· high protocol overhead

∗ Most algorithms ignore all other cost components

– Local area networks

∗ Communication cost not that dominant
∗ Total cost function should be considered

137 www.edutechlearners.com

Query Optimization . . .

• Ordering of the operators of relational algebra is crucial for efficient query processing

• Rule of thumb: move expensive operators at the end of query processing

• Cost of RA operations:

Operation Complexity

Select, Project O(n)

(without duplicate elimination)

Project O(n log n)

(with duplicate elimination)

Group

Join

Semi-join O(n log n)

Division

Set Operators

Cartesian Product O(n2)

138 www.edutechlearners.com

Query Optimization Issues

Several issues have to be considered in query optimization

• Types of query optimizers

– wrt the search techniques (exhaustive search, heuristics)

– wrt the time when the query is optimized (static, dynamic)

• Statistics

• Decision sites

• Network topology

• Use of semijoins

139 www.edutechlearners.com

Query Optimization Issues . . .

• Types of Query Optimizers wrt Search Techniques

– Exhaustive search

∗ Cost-based
∗ Optimal
∗ Combinatorial complexity in the number of relations

– Heuristics

∗ Not optimal
∗ Regroups common sub-expressions
∗ Performs selection, projection first
∗ Replaces a join by a series of semijoins
∗ Reorders operations to reduce intermediate relation size
∗ Optimizes individual operations

140 www.edutechlearners.com

Query Optimization Issues . . .

• Types of Query Optimizers wrt Optimization Timing

– Static

∗ Query is optimized prior to the execution
∗ As a consequence it is difficult to estimate the size of the intermediate results
∗ Typically amortizes over many executions

– Dynamic

∗ Optimization is done at run time
∗ Provides exact information on the intermediate relation sizes
∗ Have to re-optimize for multiple executions

– Hybrid

∗ First, the query is compiled using a static algorithm
∗ Then, if the error in estimate sizes greater than threshold, the query is re-optimized

at run time

141 www.edutechlearners.com

Query Optimization Issues . . .

• Statistics

– Relation/fragments

∗ Cardinality
∗ Size of a tuple
∗ Fraction of tuples participating in a join with another relation/fragment

– Attribute

∗ Cardinality of domain
∗ Actual number of distinct values
∗ Distribution of attribute values (e.g., histograms)

– Common assumptions

∗ Independence between different attribute values
∗ Uniform distribution of attribute values within their domain

142 www.edutechlearners.com

Query Optimization Issues . . .

• Decision sites

– Centralized

∗ Single site determines the ”best” schedule
∗ Simple
∗ Knowledge about the entire distributed database is needed

– Distributed

∗ Cooperation among sites to determine the schedule
∗ Only local information is needed
∗ Cooperation comes with an overhead cost

– Hybrid

∗ One site determines the global schedule
∗ Each site optimizes the local sub-queries

143 www.edutechlearners.com

Query Optimization Issues . . .

• Network topology

– Wide area networks (WAN) point-to-point

∗ Characteristics
· Low bandwidth
· Low speed
· High protocol overhead

∗ Communication cost dominate; all other cost factors are ignored
∗ Global schedule to minimize communication cost
∗ Local schedules according to centralized query optimization

– Local area networks (LAN)

∗ Communication cost not that dominant
∗ Total cost function should be considered
∗ Broadcasting can be exploited (joins)
∗ Special algorithms exist for star networks

144 www.edutechlearners.com

Query Optimization Issues . . .

• Use of Semijoins

– Reduce the size of the join operands by first computing semijoins

– Particularly relevant when the main cost is the communication cost

– Improves the processing of distributed join operations by reducing the size of data
exchange between sites

– However, the number of messages as well as local processing time is increased

145 www.edutechlearners.com

Distributed Query Processing Steps

146 www.edutechlearners.com

Conclusion

• Query processing transforms a high level query (relational calculus) into an equivalent
lower level query (relational algebra). The main difficulty is to achieve the efficiency in
the transformation

• Query optimization aims to mimize the cost function:

• Query optimizers vary by search type (exhaustive search, heuristics) and by type of the
algorithm (dynamic, static, hybrid). Different statistics are collected to support the query
optimization process

• Query optimizers vary by decision sites (centralized, distributed, hybrid)

• Query processing is done in the following sequence: query decomposition→data
localization→global optimization→ local optimization

147 www.edutechlearners.com

Chapter 6: Query Decomposition and Data
Localization

• Query Decomposition

• Data Localization

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of this course.

148 www.edutechlearners.com

Query Decomposition

• Query decomposition: Mapping of calcu-
lus query (SQL) to algebra operations (select,
project, join, rename)

• Both input and output queries refer to global re-
lations, without knowledge of the distribution of
data.

• The output query is semantically correct and
good in the sense that redundant work is
avoided.

• Query decomposistion consists of 4 steps:

1. Normalization: Transform query to a normalized form

2. Analysis: Detect and reject ”incorrect” queries; possible only for a subset of relational
calculus

3. Elimination of redundancy: Eliminate redundant predicates

4. Rewriting: Transform query to RA and optimize query

149 www.edutechlearners.com

Query Decomposition – Normalization

• Normalization: Transform the query to a normalized form to facilitate further processing.
Consists mainly of two steps.

1. Lexical and syntactic analysis

– Check validity (similar to compilers)
– Check for attributes and relations
– Type checking on the qualification

2. Put into normal form

– With SQL, the query qualification (WHERE clause) is the most difficult part as it
might be an arbitrary complex predicate preceeded by quantifiers (,)

– Conjunctive normal form

(p11 ∨ p12 ∨ · · · ∨ p1n) ∧ · · · ∧ (pm1 ∨ pm2 ∨ · · · ∨ pmn)

– Disjunctive normal form

(p11 ∧ p12 ∧ · · · ∧ p1n) ∨ · · · ∨ (pm1 ∧ pm2 ∧ · · · ∧ pmn)

– In the disjunctive normal form, the query can be processed as independent
conjunctive subqueries linked by unions (corresponding to the disjunction)

150 www.edutechlearners.com

Query Decomposition – Normalization . . .

• Example: Consider the following query: Find the names of employees who have been
working on project P1 for 12 or 24 months?

• The query in SQL:

SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO AND

ASG.PNO = ‘‘P1’’ AND
DUR = 12 OR DUR = 24

• The qualification in conjunctive normal form:

EMP.ENO = ASG.ENO ∧ ASG.PNO = ”P1” ∧ (DUR = 12 ∨ DUR = 24)

• The qualification in disjunctive normal form:

(EMP.ENO = ASG.ENO ∧ ASG.PNO = ”P1” ∧ DUR = 12) ∨

(EMP.ENO = ASG.ENO ∧ ASG.PNO = ”P1” ∧ DUR = 24)

151 www.edutechlearners.com

Query Decomposition – Analysis

• Analysis: Identify and reject type incorrect or semantically incorrect queries

• Type incorrect

– Checks whether the attributes and relation names of a query are defined in the global
schema

– Checks whether the operations on attributes do not conflict with the types of the
attributes, e.g., a comparison > operation with an attribute of type string

• Semantically incorrect

– Checks whether the components contribute in any way to the generation of the result

– Only a subset of relational calculus queries can be tested for correctness, i.e., those
that do not contain disjunction and negation

– Typical data structures used to detect the semantically incorrect queries are:

∗ Connection graph (query graph)
∗ Join graph

152 www.edutechlearners.com

Query Decomposition – Analysis . . .

• Example: Consider a query:

SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

• Query/connection graph

– Nodes represent operand or result relation

– Edge represents a join if both connected
nodes represent an operand relation, oth-
erwise it is a projection

• Join graph

– a subgraph of the query graph that consid-
ers only the joins

• Since the query graph is connected, the query is semantically correct

153 www.edutechlearners.com

Query Decomposition – Analysis . . .

• Example: Consider the following query and its query graph:

SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

• Since the graph is not connected, the query is semantically incorrect.

• 3 possible solutions:

– Reject the query

– Assume an implicit Cartesian Product between ASG and PROJ

– Infer from the schema the missing join predicate ASG.PNO = PROJ.PNO

154 www.edutechlearners.com

Query Decomposition – Elimination of Redundancy

• Elimination of redundancy: Simplify the query by eliminate redundancies, e.g.,
redundant predicates

– Redundancies are often due to semantic integrity constraints expressed in the query
language

– e.g., queries on views are expanded into queries on relations that satiesfy certain
integrity and security constraints

• Transformation rules are used, e.g.,

– p ∧ p ⇐⇒ p

– p ∨ p ⇐⇒ p

– p ∧ true ⇐⇒ p

– p ∨ false ⇐⇒ p

– p ∧ false ⇐⇒ false

– p ∨ true ⇐⇒ true

– p ∧ ¬p ⇐⇒ false

– p ∨ ¬p ⇐⇒ true

– p1 ∧ (p1 ∨ p2) ⇐⇒ p1

– p1 ∨ (p1 ∧ p2) ⇐⇒ p1

155 www.edutechlearners.com

Query Decomposition – Elimination of Redundancy . . .

• Example: Consider the following query:

SELECT TITLE
FROM EMP
WHERE EMP.ENAME = "J. Doe"
OR (NOT(EMP.TITLE = "Programmer")
AND (EMP.TITLE = "Elect. Eng."
OR EMP.TITLE = "Programmer")
AND NOT(EMP.TITLE = "Elect. Eng."))

• Let p1 be ENAME = ”J. Doe”, p be TITLE = ”Programmer” and p be TITLE = ”Elect.
Eng.”

• Then the qualification can be written as p1 ∨ (¬p2 ∧ (p2 ∨ p3) ∧ ¬p3)
and then be transformed into p1

• Simplified query:

SELECT TITLE
FROM EMP
WHERE EMP.ENAME = "J. Doe"

156 www.edutechlearners.com

Query Decomposition – Rewriting

• Rewriting: Convert relational calculus query to relational algebra query and find an
efficient expression.

• Example: Find the names of employees other
than J. Doe who worked on the CAD/CAM
project for either 1 or 2 years.

• SELECT ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND ENAME 6= "J. Doe"
AND PNAME = "CAD/CAM"
AND (DUR = 12 OR DUR = 24)

• A query tree represents the RA-expression

– Relations are leaves (FROM clause)

– Result attributes are root (SELECT clause)

– Intermediate leaves should give a result
from the leaves to the root

157 www.edutechlearners.com

Query Decomposition – Rewriting . . .

• By applying transformation rules, many different trees/expressions may be found that
are equivalent to the original tree/expression, but might be more efficient.

• In the following we assume relations R(A1, . . . , An), S(B1, . . . , Bn), and T which is
union-compatible to R.

• Commutativity of binary operations

– R × S = S × R

– R ⋊⋉ S = S ⋊⋉ R

– R ∪ S = S R

• Associativity of binary operations

– (R × S) × T = R × (S × T)

– (R ⋊⋉ S) ⋊⋉ T = R ⋊⋉ (S ⋊⋉ T)

• Idempotence of unary operations

– ΠA(ΠA(R)) = ΠA(R)

– σp1(A1)(σp2(A2)(R)) = σp1(A1)∧p2(A2)(R)

158 www.edutechlearners.com

Query Decomposition – Rewriting . . .

• Commuting selection with binary operations

– σp(A)(R × S) ⇐⇒ σp(A)(R) × S

– σp(A1)(R ⋊⋉p(A2,B2) S) ⇐⇒ σp(A1)(R) ⋊⋉p(A2,B2) S

– σp(A)(R ∪ T) ⇐⇒ σp(A)(R) ∪ σp(A)(T)

∗ (A belongs to R and T)

• Commuting projection with binary operations (assume C = A B ,
A′

⊆ A, B′
⊆ B)

– ΠC(R × S) ⇐⇒ ΠA′(R) × ΠB′(S)

– ΠC(R ⋊⋉p(A′,B′) S) ⇐⇒ ΠA′(R) ⋊⋉p(A′,B′) ΠB′(S)

– ΠC(R ∪ S) ⇐⇒ ΠC(R) ∪ ΠC(S)

159 www.edutechlearners.com

Query Decomposition – Rewriting . . .

• Example: Two equivalent query trees for the previous example

– Recall the schemas: EMP(ENO, ENAME, TITLE)
PROJ(PNO, PNAME, BUDGET)
ASG(ENO, PNO, RESP, DUR)

160 www.edutechlearners.com

Query Decomposition – Rewriting . . .

• Example (contd.): Another equivalent query tree, which allows a more efficient query
evaluation, since the most selective operations are applied first.

161 www.edutechlearners.com

Data Localization

• Data localization

– Input: Algebraic query on global conceptual
schema

– Purpose:
∗ Apply data distribution information to the

algebra operations and determine which
fragments are involved

∗ Substitute global query with queries on
fragments

∗ Optimize the global query

162 www.edutechlearners.com

Data Localization . . .

• Example:

– Assume EMP is horizontally fragmented
into EMP1, EMP2, EMP3 as follows:
∗ EMP1 = σENO≤”E3”(EMP)
∗ EMP2 = σ”E3”<ENO≤”E6”(EMP)
∗ EMP3 = σENO>”E6”(EMP)

– ASG fragmented into ASG1 and ASG2 as
follows:
∗ ASG1 = σ (ASG)
∗ ASG2 = σENO>”E3”(ASG)

• Simple approach: Replace in all queries

– EMP by (EMP1∪EMP2∪ EMP3)

– ASG by (ASG1∪ASG2)

– Result is also called generic query

• In general, the generic query is inefficient since important restructurings and
simplifications can be done.

163 www.edutechlearners.com

Data Localization . . .

• Example (contd.): Parallelsim in the evaluation is often possible

– Depending on the horizontal fragmentation, the fragments can be joined in parallel
followed by the union of the intermediate results.

164 www.edutechlearners.com

Data Localization . . .

• Example (contd.): Unnecessary work can be eliminated

– e.g., EMP3 ⋊⋉ ASG1 gives an empty result

∗ EMP3 = σENO>”E6”(EMP)
∗ ASG1 = σENO≤”E3”(ASG)

165 www.edutechlearners.com

Data Localizations Issues

• Various more advanced reduction techniques are possible to generate simpler and
optimized queries.

• Reduction of horizontal fragmentation (HF)

– Reduction with selection

– Reduction with join

• Reduction of vertical fragmentation (VF)

– Find empty relations

166 www.edutechlearners.com

Data Localizations Issues – Reduction of HF

• Reduction with selection for HF

– Consider relation R with horizontal fragmentation F = {R1, R2, . . . , Rk}, where
Ri = σpi

(R)

– Rule1: Selections on fragments, σpj
(Ri), that have a qualification contradicting the

qualification of the fragmentation generate empty relations, i.e.,

σpj
(Ri) = ∅ ⇐⇒ ∀x ∈ R(pi(x) ∧ pj(x) = false)

– Can be applied if fragmentation predicate is inconsistent with the query selection
predicate.

• Example: Consider the query: SELECT * FROM EMP WHERE ENO=”E5”

After commuting the selec-
tion with the union operation,
it is easy to detect that the
selection predicate contra-
dicts the predicates of EMP1

and EMP3.

167 www.edutechlearners.com

Data Localizations Issues – Reduction for HF . . .

• Reduction with join for HF

– Joins on horizontally fragmented relations can be simplified when the joined relations
are fragmented according to the join attributes.

– Distribute join over union

(R1 ∪ R2) ⋊⋉ S ⇐⇒ (R1 ⋊⋉ S) ∪ (R2 ⋊⋉ S)

– Rule 2: Useless joins of fragments, Ri = σpi
(R) and Rj = σpj

(R), can be
determined when the qualifications of the joined fragments are contradicting.

⋊⋉

∪

R1 R2 R3

Ri

∪

⋊⋉pi,p1

Ri R1

⋊⋉pi,p2

Ri R2

⋊⋉pi,p3

Ri R3

168 www.edutechlearners.com

Data Localizations Issues – Reduction for HF . . .

• Example: Consider the following query and fragmentation:

– Query: SELECT * FROM EMP, ASG WHERE EMP.ENO=ASG.ENO

– Horizontal fragmentation:
∗ EMP1 = σENO≤”E3”(EMP)

∗ EMP2 = σ”E3”<ENO≤”E6”(EMP)

∗ EMP3 = σENO>”E6”(EMP)

∗ ASG1 = σENO≤”E3”(ASG)

∗ ASG2 = σENO>”E3”(ASG)

– Generic query

– The query reduced by distribut-
ing joins over unions and apply-
ing rule 2 can be implemented
as a union of three partial joins
that can be done in parallel.

169 www.edutechlearners.com

Data Localizations Issues – Reduction for HF . . .

• Reduction with join for derived HF

– The horizontal fragmentation of one relation is derived from the horizontal
fragmentation of another relation by using semijoins.

• If the fragmentation is not on the same predicate as the join (as in the previous
example), derived horizontal fragmentation can be applied in order to make efficient join
processing possible.

• Example: Assume the following query and fragmentation of the EMP relation:

– Query: SELECT * FROM EMP, ASG WHERE EMP.ENO=ASG.ENO

– Fragmentation (not on the join attribute):

∗ EMP1 = σTITLE=“Prgrammer”(EMP)

∗ EMP2 = σTITLE6=“Prgrammer”(EMP)

– To achieve efficient joins ASG can be fragmented as follows:

∗ ASG1= ASG⊲<ENOEMP1
∗ ASG2= ASG⊲<ENOEMP2

– The fragmentation of ASG is derived from the fragmentation of EMP

– Queries on derived fragments can be reduced, e.g., ASG1 ⋊⋉ EMP2 = ∅

170 www.edutechlearners.com

Data Localizations Issues – Reduction for VF

• Reduction for Vertical Fragmentation

– Recall, VF distributes a relation based on projection, and the reconstruction operator
is the join.

– Similar to HF, it is possible to identify useless intermediate relations, i.e., fragments
that do not contribute to the result.

– Assume a relation R(A) with A = A , . . . , A , which is vertically fragmented as
Ri = πA′

i
(R), where A′

i ⊆ A.

– Rule 3: πD,K(Ri) is useless if the set of projection attributes D is not in A′
i and K

is the key attribute.

– Note that the result is not empty, but it is useless, as it contains only the key attribute.

171 www.edutechlearners.com

Data Localizations Issues – Reduction for VF . . .

• Example: Consider the following query and vertical fragmentation:

– Query: SELECT ENAME FROM EMP

– Fragmentation:
∗ EMP1 = ΠENO,ENAME(EMP)
∗ EMP2 = ΠENO,TITLE(EMP)

• Generic query

• Reduced query

– By commuting the projection with the join (i.e., pro-
jecting on ENO, ENAME), we can see that the pro-
jection on EMP2 is useless because ENAME is not
in EMP2.

172 www.edutechlearners.com

Conclusion

• Query decomposition and data localization maps calculus query into algebra operations
and applies data distribution information to the algebra operations.

• Query decomposition consists of normalization, analysis, elimination of redundancy, and
rewriting.

• Data localization reduces horizontal fragmentation with join and selection, and vertical
fragmentation with joins, and aims to find empty relations.

173 www.edutechlearners.com

Chapter 7: Optimization of Distributed
Queries

• Basic Concepts

• Distributed Cost Model

• Database Statistics

• Joins and Semijoins

• Query Optimization Algorithms

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of this course.

174 www.edutechlearners.com

Basic Concepts

• Query optimization: Process of producing an op-
timal (close to optimal) query execution plan which
represents an execution strategy for the query

– The main task in query optimization is to con-
sider different orderings of the operations

• Centralized query optimization:

– Find (the best) query execution plan in the
space of equivalent query trees

– Minimize an objective cost function

– Gather statistics about relations

• Distributed query optimization brings additional issues

– Linear query trees are not necessarily a good choice

– Bushy query trees are not necessarily a bad choice

– What and where to ship the relations

– How to ship relations (ship as a whole, ship as needed)

– When to use semi-joins instead of joins

175 www.edutechlearners.com

Basic Concepts . . .

• Search space: The set of alternative query execution plans (query trees)

– Typically very large

– The main issue is to optimize the joins

– For N relations, there are O(N !) equivalent join trees that can be obtained by
applying commutativity and associativity rules

• Example: 3 equivalent query trees (join trees) of the joins in the following query

SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO AND ASG.PNO=PROJ.PNO

176 www.edutechlearners.com

Basic Concepts . . .

• Reduction of the search space

– Restrict by means of heuristics

∗ Perform unary operations before binary operations, etc

– Restrict the shape of the join tree

∗ Consider the type of trees (linear trees, vs. bushy ones)

Linear Join Tree Bushy Join Tree

177 www.edutechlearners.com

Basic Concepts . . .

• There are two main strategies to scan the search space

– Deterministic

– Randomized

• Deterministic scan of the search space

– Start from base relations and build plans by adding one relation at each step

– Breadth-first strategy: build all possible plans before choosing the “best” plan
(dynamic programming approach)

– Depth-first strategy: build only one plan (greedy approach)

178 www.edutechlearners.com

Basic Concepts . . .

• Randomized scan of the search space

– Search for optimal solutions around a particular starting point

– e.g., iterative improvement or simulated annealing techniques

– Trades optimization time for execution time

∗ Does not guarantee that the best solution is obtained, but avoid the high cost of
optimization

– The strategy is better when more than 5-6 relations are involved

179 www.edutechlearners.com

Distributed Cost Model

• Two different types of cost functions can be used

– Reduce total time

∗ Reduce each cost component (in terms of time) individually, i.e., do as little for each
cost component as possible

∗ Optimize the utilization of the resources (i.e., increase system throughput)

– Reduce response time

∗ Do as many things in parallel as possible
∗ May increase total time because of increased total activity

180 www.edutechlearners.com

Distributed Cost Model . . .

• Total time: Sum of the time of all individual components

– Local processing time: CPU time + I/O time

– Communication time: fixed time to initiate a message + time to transmit the data

Total time =TCPU ∗ #instructions + TI/O ∗ #I /Os +

TMSG ∗ #messages + TTR ∗ #bytes

• The individual components of the total cost have different weights:

– Wide area network

∗ Message initiation and transmission costs are high
∗ Local processing cost is low (fast mainframes or minicomputers)
∗ Ratio of communication to I/O costs is 20:1

– Local area networks

∗ Communication and local processing costs are more or less equal
∗ Ratio of communication to I/O costs is 1:1.6 (10MB/s network)

181 www.edutechlearners.com

Distributed Cost Model . . .

• Response time: Elapsed time between the initiation and the completion of a query

Response time =TCPU ∗ #seq instructions + TI/O ∗ #seq I /Os +

Tmsg *#seq messages + Tcpu * #seq bytes

– where #seq x (x in instructions, I/O, messages, bytes) is the maximum number of
x which must be done sequentially.

• Any processing and communication done in parallel is ignored

182 www.edutechlearners.com

Distributed Cost Model . . .

• Example: Query at site 3 with data from sites 1 and 2.

– Assume that only the communication cost is considered

– Total time = TMSG ∗ 2 + TTR ∗ (x + y)

– Response time = max{TMSG + TTR ∗ x, TMSG + TTR ∗ y}

183 www.edutechlearners.com

Database Statistics

• The primary cost factor is the size of intermediate relations

– that are produced during the execution and

– must be transmitted over the network, if a subsequent operation is located on a
different site

• It is costly to compute the size of the intermediate relations precisely.

• Instead global statistics of relations and fragments are computed and used to
provide approximations

184 www.edutechlearners.com

Database Statistics . . .

• Let R(A1, A2, . . . , Ak) be a relation fragmented into R1, R2, . . . , Rr.

• Relation statistics

– min and max values of each attribute: min{Ai}, max{Ai}.

– length of each attribute: length(Ai)

– number of distinct values in each fragment (cardinality): card(A),
(card(dom(Ai)))

• Fragment statistics

– cardinality of the fragment: card(Ri)

– cardinality of each attribute of each fragment: card(ΠAi
(Rj))

185 www.edutechlearners.com

Database Statistics . . .

• Selectivity factor of an operation: the proportion of tuples of an operand relation that
participate in the result of that operation

• Assumption: independent attributes and uniform distribution of attribute values

• Selectivity factor of selection

SFσ(A = value) =
1

card(ΠA(R))

max(A) value

max(A) min(A)

SFσ(A < value) =
value − min(A)

max(A) − min(A)

• Properties of the selectivity factor of the selection

SFσ(p(Ai) ∧ p(Aj)) = SFσ(p(Ai)) ∗ SFσ(p(Aj))

SFσ(p(Ai) ∨ p(Aj)) = SFσ(p(Ai)) + SFσ(p(Aj)) − (SFσ(p(Ai)) ∗ SFσ(p(Aj))

SFσ(A ∈ {values}) = SFσ(A = value) ∗ card({values})

186 www.edutechlearners.com

Database Statistics . . .

• Cardinality of intermediate results

– Selection

card(σP (R)) = SFσ(P) ∗ card(R)

– Projection

∗ More difficult: duplicates, correlations between projected attributes are unknown
∗ Simple if the projected attribute is a key

card(ΠA(R)) = card(R)

– Cartesian Product

card(R × S) = card(R) ∗ card(S)

– Union

∗ upper bound: card(R ∪ S) ≤ card(R) + card(S)
∗ lower bound: card(R ∪ S) ≥ max{card(R), card(S)}

– Set Difference

∗ upper bound: card(R − S) = card(R)
∗ lower bound: 0

187 www.edutechlearners.com

Database Statistics . . .

• Selectivity factor for joins

SF⋊⋉ =
card(R ⋊⋉ S)

card(R) ∗ card(S)

• Cardinality of joins

– Upper bound: cardinality of Cartesian Product
card(R S) card(R) card(S)

– General case (if SF is given):

card(R ⋊⋉ S) = SF⋊⋉ ∗ card(R) ∗ card(S)

– Special case: R.A is a key of R and S.A is a foreign key of S;

∗ each S-tuple matches with at most one tuple of R

card(R ⋊⋉R.A=S.A S) = card(S)

188 www.edutechlearners.com

Database Statistics . . .

• Selectivity factor for semijoins: fraction of R-tuples that join with S-tuples

– An approximation is the selectivity of A in S

SF⊲<(R ⊲<A S) = SF⊲<(S.A) =
card(ΠA(S))

card(dom[A])

• Cardinality of semijoin (general case):

card(R⊲<A S) = SF⊲<(S.A) ∗ card(R)

• Example: R.A is a foreign key in S (S.A is a primary key)
Then SF = 1 and the result size corresponds to the size of R

189 www.edutechlearners.com

Join Ordering in Fragment Queries

• Join ordering is an important aspect in centralized DBMS, and it is even more
important in a DDBMS since joins between fragments that are stored at different sites
may increase the communication time.

• Two approaches exist:

– Optimize the ordering of joins directly

∗ INGRES and distributed INGRES
∗ System R and System R∗

– Replace joins by combinations of semijoins in order to minimize the communication
costs

∗ Hill Climbing and SDD-1

190 www.edutechlearners.com

Join Ordering in Fragment Queries . . .

• Direct join odering of two relation/fragments located at different sites

– Move the smaller relation to the other site

– We have to estimate the size of R and S

191 www.edutechlearners.com

Join Ordering in Fragment Queries . . .

• Direct join ordering of queries involving more than two relations is substantially more
complex

• Example: Consider the following query and the respective join graph, where we make
also assumptions about the locations of the three relations/fragments

PROJ ⋊⋉PNO ASG ⋊⋉ENO EMP

192 www.edutechlearners.com

Join Ordering in Fragment Queries . . .

• Example (contd.): The query can be evaluated in at least 5 different ways.

– Plan 1: EMP→Site 2

Site 2: EMP’=EMP⋊⋉ASG

EMP’→Site 3

Site 3: EMP’⋊⋉PROJ

– Plan 2: ASG→Site 1

Site 1: EMP’=EMP⋊⋉ASG

EMP’ Site 3

Site 3: EMP’ PROJ

– Plan 3: ASG→Site 3

Site 3: ASG’=ASG⋊⋉PROJ

ASG’→Site 1

Site 1: ASG’⋊⋉EMP

– Plan 4: PROJ→Site 2

Site 2: PROJ’=PROJ⋊⋉ASG

PROJ’ Site 1

Site 1: PROJ’⋊⋉EMP

– Plan 5: EMP→Site 2

PROJ→Site 2

Site 2: EMP⋊⋉PROJ⋊⋉ASG

• To select a plan, a lot of information is needed, including

– size(EMP), size(ASG), size(PROJ), size(EMP ⋊⋉ ASG),

size(ASG ⋊⋉ PROJ)

– Possibilities of parallel execution if response time is used

193 www.edutechlearners.com

Semijoin Based Algorithms

• Semijoins can be used to efficiently implement joins

– The semijoin acts as a size reducer (similar as to a selection) such that smaller
relations need to be transferred

• Consider two relations: R located at site 1 and S located and site 2

– Solution with semijoins: Replace one or both operand relations/fragments by a
semijoin, using the following rules:

R ⋊⋉A S ⇐⇒ (R ⊲<A S) ⋊⋉A S

⇐⇒ R ⋊⋉A (S ⊲<A R)

⇐⇒ (R ⊲<A S) ⋊⋉A (S ⊲<A R)

• The semijoin is beneficial if the cost to produce and send it to the other site is less than
the cost of sending the whole operand relation and of doing the actual join.

194 www.edutechlearners.com

Semijoin Based Algorithms

• Cost analysis R ⋊⋉A S vs. (R ⊲<A S) ⋊⋉ S, assuming that size(R) < size(S)

– Perform the join R ⋊⋉ S:

∗ R → Site 2
∗ Site 2 computes R ⋊⋉ S

– Perform the semijoins (R ⊲< S) ⋊⋉ S:

∗ S′ = Π (S)
∗ S′= Site 1
∗ Site 1 computes R = R < S
∗ R′

→Site 2
∗ Site 2 computes R′

⋊⋉ S

– Semijoin is better if: size(ΠA(S)) + size(R ⊲< S) < size(R)

• The semijoin approach is better if the semijoin acts as a sufficient reducer (i.e., a few
tuples of R participate in the join)

• The join approach is better if almost all tuples of R participate in the join

195 www.edutechlearners.com

INGRES Algorithm

• INGRES uses a dynamic query optimization algorithm that recursively breaks a query
into smaller pieces. It is based on the following ideas:

–

∗ The output of qi is consumed by qi+1

– For the decomposition two basic techniques are used: detachment and substitution

– There’s a processor that can efficiently process mono-relation queries

∗ Optimizes each query independently for the access to a single relation

An n-relation query q is decomposed into n subqueries q1 ! q2 ! · · · ! qn � Each qi is
a mono-relation (mono-variable) query

196 www.edutechlearners.com

INGRES Algorithm . . .

• Detachment: Break a query q into q′ → q′′, based on a common relation that is the
result of q′, i.e.

– The query

q: SELECT R2.A2, . . . , Rn.An

FROM R1, R2, . . . , Rn

WHERE P1(R1.A
′
1)

AND P (R .A , . . . , R .A)

– is decomposed by detachment of the common relation R1 into

q′: SELECT R1.A1 INTO R′
1

FROM R1

WHERE P1(R1.A
′
1)

q′′: SELECT R2.A2, . . . , Rn.An

FROM R′
1, R2, . . . , Rn

WHERE P2(R
′
1.A1, . . . , Rn.An)

• Detachment reduces the size of the relation on which the query q′′ is defined.

197 www.edutechlearners.com

INGRES Algorithm . . .

• Example: Consider query q1: “Names of employees working on the CAD/CAM project”

q1: SELECT EMP.ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PROJ.PNAME = ”CAD/CAM”

• Decompose q1 into q11 → q′:

q11: SELECT PROJ.PNO INTO JVAR
FROM PROJ
WHERE PROJ.PNAME = ”CAD/CAM”

q′: SELECT EMP.ENAME
FROM EMP, ASG, JVAR
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = JVAR.PNO

198 www.edutechlearners.com

INGRES Algorithm . . .

• Example (contd.): The successive detachments may transform q′ into q12 → q13:

q′: SELECT EMP.ENAME
FROM EMP, ASG, JVAR
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = JVAR.PNO

q12: SELECT ASG.ENO INTO GVAR
FROM ASG,JVAR
WHERE ASG.PNO=JVAR.PNO

q13: SELECT EMP.ENAME
FROM EMP,GVAR
WHERE EMP.ENO=GVAR.ENO

• q1 is now decomposed by detachment into q11 → q12 → q13

• q11 is a mono-relation query

• q12 and q13 are multi-relation queries, which cannot be further detached.

– also called irreducible

199 www.edutechlearners.com

INGRES Algorithm . . .

• Tuple substitution allows to convert an irreducible query q into mono-relation queries.

– Choose a relation R1 in q for tuple substitution

– For each tuple in R1, replace the R1-attributes referred in q by their actual values,
thereby generating a set of subqueries q′ with n − 1 relations, i.e.,

q(R1, R2, . . . , Rn) is replaced by {q′(t1i
, R2, . . . , Rn), t1i

∈ R1}

• Example (contd.): Assume GVAR consists only of the tuples E1, E2 . Then q13 is
rewritten with tuple substitution in the following way

q13: SELECT EMP.ENAME
FROM EMP, GVAR
WHERE EMP.ENO = GVAR.ENO

q131: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO = ”E1”

q132: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO = ”E2”

– q131 and q132 are mono-relation queries

200 www.edutechlearners.com

Distributed INGRES Algorithm

• The distributed INGRES query optimization algorithm is very similar to the
centralized INGRES algorithm.

– In addition to the centralized INGRES, the distributed one should break up each
query qi into sub-queries that operate on fragments; only horizontal fragmentation is
handled.

– Optimization with respect to a combination of communication cost and response time

201 www.edutechlearners.com

System R Algorithm

• The System R (centralized) query optimization algorithm

– Performs static query optimization based on “exhaustive search” of the solution space
and a cost function (IO cost + CPU cost)

∗ Input: relational algebra tree
∗ Output: optimal relational algebra tree
∗ Dynamic programming technique is applied to reduce the number of alternative

plans

– The optimization algorithm consists of two steps

1. Predict the best access method to each individual relation (mono-relation query)
∗ Consider using index, file scan, etc.

2. For each relation R, estimate the best join ordering
∗ R is first accessed using its best single-relation access method
∗ Efficient access to inner relation is crucial

– Considers two different join strategies

∗ (Indexed-) nested loop join
∗ Sort-merge join

202 www.edutechlearners.com

System R Algorithm . . .

• Example: Consider query q1: “Names of employees working on the CAD/CAM project”

PROJ ⋊⋉PNO ASG ⋊⋉ENO EMP

– Join graph

– Indexes

∗ EMP has an index on ENO
∗ ASG has an index on PNO
∗ PROJ has an index on PNO and an index on PNAME

203 www.edutechlearners.com

System R Algorithm . . .

• Example (contd.): Step 1 – Select the best single-relation access paths

– EMP: sequential scan (because there is no selection on EMP)

– ASG: sequential scan (because there is no selection on ASG)

– PROJ: index on PNAME (because there is a selection on PROJ based on PNAME)

204 www.edutechlearners.com

System R Algorithm . . .

• Example (contd.): Step 2 – Select the best join ordering for each relation

– (EMP × PROJ) and (PROJ × EMP) are pruned because they are CPs

– (ASG × PROJ) pruned because we assume it has higher cost than (PROJ × ASG);
similar for (PROJ × EMP)

– Best total join order ((PROJ⋊⋉ ASG)⋊⋉ EMP), since it uses the indexes best

∗ Select PROJ using index on PNAME
∗ Join with ASG using index on PNO
∗ Join with EMP using index on ENO

205 www.edutechlearners.com

Distributed System R
∗ Algorithm

• The System R∗ query optimization algorithm is an extension of the System R query
optimization algorithm with the following main characteristics:

– Only the whole relations can be distributed, i.e., fragmentation and replication is not
considered

– Query compilation is a distributed task, coordinated by a master site, where the
query is initiated

– Master site makes all inter-site decisions, e.g., selection of the execution sites, join
ordering, method of data transfer, ...

– The local sites do the intra-site (local) optimizations, e.g., local joins, access paths

• Join ordering and data transfer between different sites are the most critical issues to be
considered by the master site

206 www.edutechlearners.com

Distributed System R
∗ Algorithm . . .

• Two methods for inter-site data transfer

– Ship whole: The entire relation is shipped to the join site and stored in a temporary
relation

∗ Larger data transfer
∗ Smaller number of messages
∗ Better if relations are small

– Fetch as needed: The external relation is sequentially scanned, and for each tuple
the join value is sent to the site of the inner relation and the matching inner tuples are
sent back (i.e., semijoin)

∗ Number of messages = O(cardinality of outer relation)
∗ Data transfer per message is minimal
∗ Better if relations are large and the selectivity is good

207 www.edutechlearners.com

Distributed System R
∗ Algorithm . . .

• Four main join strategies for R ⋊⋉ S:

– R is outer relation

– S is inner relation

• Notation:

– LT denotes local processing time

– CT denotes communication time

– s denotes the average number of S-tuples that match an R-tuple

• Strategy 1: Ship the entire outer relation to the site of the inner relation, i.e.,

– Retrieve outer tuples

– Send them to the inner relation site

– Join them as they arrive

Total cost = LT (retrieve card(R) tuples from R) +

CT (size(R)) +

LT (retrieve s tuples from S) ∗ card(R)

208 www.edutechlearners.com

Distributed System R
∗ Algorithm . . .

• Strategy 2: Ship the entire inner relation to the site of the outer relation. We cannot join
as they arrive; they need to be stored.

– The inner relation S need to be stored in a temporary relation

Total cost = LT (retrieve card(S) tuples from S) +

CT (size(S)) +

LT (store card(S) tuples in T) +

LT (retrieve card(R) tuples from R) +

LT (retrieve s tuples from T) ∗ card(R)

209 www.edutechlearners.com

Distributed System R
∗ Algorithm . . .

• Strategy 3: Fetch tuples of the inner relation as needed for each tuple of the outer
relation.

– For each R-tuple, the join attribute A is sent to the site of S

– The s matching S-tuples are retrieved and sent to the site of R

Total cost = LT (retrieve card(R) tuples from R) +

CT (length(A)) ∗ card(R) +

LT (retrieve s tuples from S) ∗ card(R) +

CT (s ∗ length(S)) ∗ card(R)

210 www.edutechlearners.com

Distributed System R
∗ Algorithm . . .

• Strategy 4: Move both relations to a third site and compute the join there.

– The inner relation S is first moved to a third site and stored in a temporary relation.

– Then the outer relation is moved to the third site and its tuples are joined as they
arrive.

Total cost = LT (retrieve card(S) tuples from S) +

CT (size(S)) +

LT (store card(S) tuples in T) +

LT (retrieve card(R) tuples from R) +

CT (size(R)) +

LT (retrieve s tuples from T) ∗ card(R)

211 www.edutechlearners.com

Hill-Climbing Algorithm

• Hill-Climbing query optimization algorithm

– Refinements of an initial feasible solution are recursively computed until no more cost
improvements can be made

– Semijoins, data replication, and fragmentation are not used

– Devised for wide area point-to-point networks

– The first distributed query processing algorithm

212 www.edutechlearners.com

Hill-Climbing Algorithm . . .

• The hill-climbing algorithm proceeds as follows

1. Select initial feasible execution strategy ES0

– i.e., a global execution schedule that includes all intersite communication
– Determine the candidate result sites, where a relation referenced in the query exist
– Compute the cost of transferring all the other referenced relations to each

candidate site
– ES0 = candidate site with minimum cost

2. Split ES0 into two strategies: ES1 followed by ES2

– ES1: send one of the relations involved in the join to the other relation’s site
– ES2: send the join result to the final result site

3. Replace ES0 with the split schedule which gives

cost(ES1) + cost(local join) + cost(ES2) < cost(ES0)

4. Recursively apply steps 2 and 3 on ES1 and ES2 until no more benefit can be gained

5. Check for redundant transmissions in the final plan and eliminate them

213 www.edutechlearners.com

Hill-Climbing Algorithm . . .

• Example: What are the salaries of engineers who work on the CAD/CAM project?

ΠSAL(PAY ⋊⋉TITLE EMP ⋊⋉ENO (ASG ⋊⋉PNO (σPNAME=“CAD/CAM′′(PROJ))))

– Schemas: EMP(ENO, ENBAME, TITLE), ASG(ENO, PNO, RESP, DUR),

PROJ(PNO, PNAME, BUDGET, LOC), PAY(TITLE, SAL)

– Statistics

Relation Size Site

EMP 8 1

PAY 4 2

PROJ 1 3

ASG 10 4

– Assumptions:
∗ Size of relations is defined as their cardinality
∗ Minimize total cost
∗ Transmission cost between two sites is 1
∗ Ignore local processing cost
∗ size(EMP ⋊⋉ PAY) = 8, size(PROJ ⋊⋉ ASG) = 2, size(ASG ⋊⋉ EMP) = 10

214 www.edutechlearners.com

Hill-Climbing Algorithm . . .

• Example (contd.): Determine initial feasible execution strategy

– Alternative 1: Resulting site is site 1

Total cost = cost(PAY → Site1) + cost(ASG → Site1) + cost(PROJ → Site1)

= 4 + 10 + 1 = 15

– Alternative 2: Resulting site is site 2

Total cost =8 + 10 + 1 = 19

– Alternative 3: Resulting site is site 3

Total cost = 8 + 4 + 10 = 22

– Alternative 4: Resulting site is site 4

Total cost = 8 + 4 + 1 = 13

– Therefore ES0 = EMP→Site4; PAY → Site4; PROJ → Site4

215 www.edutechlearners.com

Hill-Climbing Algorithm . . .

• Example (contd.): Candidate split

– Alternative 1: ES1, ES2, ES3

∗ ES1: EMP→Site 2

∗ ES2: (EMP⋊⋉PAY) → Site4

∗ ES3: PROJ→Site 4

Total cost = cost(EMP → Site2) +

cost((EMP ⋊⋉ PAY) → Site4) +

cost(PROJ → Site4)

= 8 + 8 + 1 = 17

– Alternative 2: ES1, ES2, ES3

∗ ES1: PAY → Site1

∗ ES2: (PAY ⋊⋉ EMP) → Site4

∗ ES3: PROJ → Site 4

Total cost = cost(PAYSite → 1) +

cost((PAY ⋊⋉ EMP) → Site4) +

cost(PROJ → Site4)

= 4 + 8 + 1 = 13

• Both alternatives are not better than ES0, so keep it (or take alternative 2 which has the
same cost)

216 www.edutechlearners.com

Hill-Climbing Algorithm . . .

• Problems

– Greedy algorithm determines an initial feasible solution and iteratively improves it

– If there are local minima, it may not find the global minimum

– An optimal schedule with a high initial cost would not be found, since it won’t be
chosen as the initial feasible solution

• Example: A better schedule is

– PROJ→Site 4

– ASG’ = (PROJ⋊⋉ASG)→Site 1

– (ASG’⋊⋉EMP)→Site 2

– Total cost= 1 + 2 + 2 = 5

217 www.edutechlearners.com

SDD-1

• The SDD-1 query optimization algorithm improves the Hill-Climbing algorithm in a
number of directions:

– Semijoins are considered

– More elaborate statistics

– Initial plan is selected better

– Post-optimization step is introduced

218 www.edutechlearners.com

Conclusion

• Distributed query optimization is more complex that centralized query processing, since

– bushy query trees are not necessarily a bad choice

– one needs to decide what, where, and how to ship the relations between the sites

• Query optimization searches the optimal query plan (tree)

• For N relations, there are O(N !) equivalent join trees. To cope with the complexity
heuristics and/or restricted types of trees are considered

• There are two main strategies in query optimization: randomized and deterministic

• (Few) semi-joins can be used to implement a join. The semi-joins require more
operations to perform, however the data transfer rate is reduced

• INGRES, System R, Hill Climbing, and SDD-1 are distributed query optimization
algorithms

219 www.edutechlearners.com

Chapter 8: Introduction to Transaction
Management

• Definition and Examples

• Properties

• Classification

• Processing Issues

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of this course.

220 www.edutechlearners.com

Definition

• Transaction: A collection of actions that transforms the DB from one consistent state
into another consistent state; during the exectuion the DB might be inconsistent.

221 www.edutechlearners.com

Definition . . .

• States of a transaction

– Active: Initial state and during the execution

– Paritally committed: After the final statement has been executed

– Committed: After successful completion

– Failed: After the discovery that normal execution can no longer proceed

– Aborted: After the transaction has been rolled back and the DB restored to its state
prior to the start of the transaction. Restart it again or kill it.

222 www.edutechlearners.com

Example

• Example: Consider an SQL query for increasing by 10% the budget of the CAD/CAM
project. This query can be specified as a transaction by providing a name for the
transaction and inserting a begin and end tag.

Transaction BUDGET_UPDATE
begin

EXEC SQL
UPDATE PROJ
SET BUDGET = BUDGET * 1.1
WHERE PNAME = "CAD/CAM"

end.

223 www.edutechlearners.com

Example . . .

• Example: Consider an airline DB with the following relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME, SPECIAL)

• Consider the reservation of a ticket, where a travel agent enters the flight number, the
date, and a customer name, and then asks for a reservation.

Begin transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

output("reservation completed")
end.

224 www.edutechlearners.com

Example . . .

• Example (contd.): A transaction always terminates – commit or abort. Check the
availability of free seats and terminate the transaction appropriately.

Begin transaction Reservation
begin

input(flight no, date, customer name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight no AND DATE = date;

if temp1 = temp2 then
output("no free seats");
Abort

else
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight no, date, customer name, null);

Commit
output("reservation completed")

endif
end.

225 www.edutechlearners.com

Example . . .

• Transactions are mainly characterized by its Read and Write operations

– Read set (RS): The data items that a transaction reads

– Write set (WS): The data items that a transaction writes

– Base set (BS): the union of the read set and write set

• Example (contd.): Read and Write set of the “Reservation” transaction

RS[Reservation] = { FLIGHT.STSOLD, FLIGHT.CAP }

WS[Reservation] = { FLIGHT.STSOLD, FC.FNO, FC.DATE,

FC.CNAME, FC.SPECIAL }

BS[Reservation] = { FLIGHT.STSOLD, FLIGHT.CAP,

FC.FNO, FC.DATE, FC.CNAME, FC.SPECIAL }

226 www.edutechlearners.com

Formalization of a Transaction

• We use the following notation:

– Ti be a transaction and x be a relation or a data item of a relation

– Oij ∈ {R(x), W (x)} be an atomic read/write operation of Ti on data item x

– OSi =
⋃

j Oij be the set of all operations of Ti

– Ni ∈ {A, C} be the termination operation, i.e., abort/commit

• Two operations Oij(x) and Oik(x) on the same data item are in conflict if at least one
of them is a write operation

• A transaction T is a partial order over its operations, i.e., T = {Σ ,<i}, where

– Σi = OSi ∪Ni

– For any Oij = {R(x) ∨W (x)} and Oik = W (x), either Oij ≺i Oik or
Oik ≺i Oij

– ∀Oij ∈ OSi(Oij ≺i Ni)

• Remarks

– The partial order≺ is given and is actually application dependent

– It has to specify the execution order between the conflicting operations and between
all operations and the termination operation

227 www.edutechlearners.com

Formalization of a Transaction . . .

• Example: Consider the following transaction T

Read(x)
Read(y)
x ← x + y
Write(x)
Commit

• The transaction is formally represented as

Σ = {R(x), R(y), W (x), C}

≺ = {(R(x), W (x)), (R(y), W (x)), (W (x), C), (R(x), C), (R(y), C)}

228 www.edutechlearners.com

Formalization of a Transaction . . .

• Example (contd.): A transaction can also be specified/represented as a directed acyclic
graph (DAG), where the vertices are the operations and the edges indicate the ordering.

– Assume

≺= {(R(x), W (x)), (R(y), W (x)), (W (x), C), (R(x), C), (R(y), C)}

– The DAG is

229 www.edutechlearners.com

Formalization of a Transaction . . .

• Example: The reservation transaction is more complex, as it has two possible
termination conditions, but a transaction allows only one

– BUT, a transaction is the execution of a program which has obviously only one
termination

– Thus, it can be represented as two transactions, one that aborts and one that commits

Transaction T1:

Σ = {R(ST, SOLD) (R CAP),A}

≺ = {(R(ST, SOLD),A) ((R CAP),A)}

Transaction T2:

Σ = {R(STSOLD), R(CAP),

W (STSOLD), W (FNO), W (DATE),

W (CNAME), W (SPECIAL), C}

≺= {(R(STSOLD), W (STSOLD)), . . . }

Begin transaction Reservation
begin

input(flight no, date, customer name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight no AND DATE = date;

if temp1 = temp2 then
output("no free seats");
Abort

else
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight no, date, customer name, null);

Commit
output("reservation completed")

endif
end.

230 www.edutechlearners.com

Properties of Transactions

• The ACID properties

– Atomicity

∗ A transaction is treated as a single/atomic unit of operation and is either executed
completely or not at all

– Consistency

∗ A transaction preserves DB consistency, i.e., does not violate any integrity
constraints

– Isolation

∗ A transaction is executed as if it would be the only one.

– Durability

∗ The updates of a committed transaction are permanent in the DB

231 www.edutechlearners.com

Properties of Transactions . . .

• Atomicity

– Either all or none of the transaction’s operations are performed

– Partial results of an interrupted transactions must be undone

– Transaction recovery is the activity of the restoration of atomicity due to input errors,
system overloads, and deadlocks

– Crash recovery is the activity of ensuring atomicity in the presence of system
crashes

232 www.edutechlearners.com

Properties of Transactions . . .

• Consistency

– The consistency of a transaction is simply its correctness and ensures that a
transaction transforms a consistent DB into a consistent DB

– Transactions are correct programs and do not violate database integrity constraints

– Dirty data is data that is updated by a transaction that has not yet committed

– Different levels of DB consistency (by Gray et al., 1976)

∗ Degree 0
· Transaction T does not overwrite dirty data of other transactions

∗ Degree 1
· Degree 0 + T does not commit any writes before EOT

∗ Degree 2
· Degree 1 + T does not read dirty data from other transactions

∗ Degree 3
· Degree 2 + Other transactions do not dirty any data read by T before T

completes

233 www.edutechlearners.com

Properties of Transactions . . .

• Isolation

– Isolation is the property of transactions which requires each transaction to see a
consistent DB at all times.

– If two concurrent transactions access a data item that is being updated by one of
them (i.e., performs a write operation), it is not possible to guarantee that the second
will read the correct value

– Interconsistency of transactions is obviously achieved if transactions are executed
serially

– Therefore, if several transactions are executed concurrently, the result must be the
same as if they were executed serially in some order (→ serializability)

234 www.edutechlearners.com

Properties of Transactions . . .

• Example: Consider the following two transactions, where initially x = 50:

T1: Read(x)
x ← x+1
Write(x)
Commit

T2: Read(x)
x ← x+1
Write(x)
Commit

• Possible execution sequences:

T1: Read(x)
T1: x<--x+1
T1: Write(x)
T1: Commit
T2: Read(x)
T2: x ← x+1
T2: Write(x)
T2: Commit

– Serial execution: we get the correct re-
sult x = 52 (the same for {T2, T1})

T1: Read(x)
T1: x<--x+1
T2: Read(x)
T1: Write(x)
T2: x ← x+1
T2: Write(x)
T1: Commit
T2: Commit

– Concurrent execution: T2 reads the
value of x while it is being changed; the
result is x = 51 and is incorrect!

235 www.edutechlearners.com

Properties of Transactions . . .

• SQL-92 specifies 3 phenomena/situations that occur if proper isolation is not maintained

– Dirty read

∗ T1 modifies x which is then read by T2 before T1 terminates; if T1 aborts, T2 has
read value which never exists in the DB:

– Non-repeatable (fuzzy) read

∗ T1 reads x; T then modifies or deletes x and commits; T tries to read x again
but reads a different value or can’t find it

– Phantom

∗ T1 searches the database according to a predicate P while T2 inserts new tuples
that satisfy P

236 www.edutechlearners.com

Properties of Transactions . . .

• Based on the 3 phenomena, SQL-92 specifies different isolation levels:

– Read uncommitted

∗ For transactions operating at this level, all three phenomena are possible

– Read committed

∗ Fuzzy reads and phantoms are possible, but dirty reads are not

– Repeatable read

∗ Only phantoms possible

– Anomaly serializable

∗ None of the phenomena are possible

237 www.edutechlearners.com

Properties of Transactions . . .

• Durability

– Once a transaction commits, the system must guarantee that the results of its
operations will never be lost, in spite of subsequent failures

– Database recovery is used to achieve the task

238 www.edutechlearners.com

Classification of Transactions

• Classification of transactions according to various criteria

– Duration of transaction

∗ On-line (short-life)
∗ Batch (long-life)

– Organization of read and write instructions in transaction

∗ General model

T : {R(x),R(y),W(y),R(z),W(x),W(z),W(w),C}

∗ Two-step (all reads before writes)

T2 : {R(x), R(y), R(z), W (x), W (z), W (y), W (w), C}

∗ Restricted (a data item has to be read before an update)

T3 : {R(x), R(y), W (y), R(z), W (x), W (z),R(w), W (w), C}

∗ Action model: each (read,write) pair is executed atomically

T2 : {[R(x), W (x)], [R(y), W (y)], [R(z), W (z)], [R(w), W (w)], C}

239 www.edutechlearners.com

Classification of Transactions . . .

• Classification of transactions according to various criteria . . .

– Structure of transaction

∗ Flat transaction
· Consists of a sequence of primitive operations between a begin and end marker

Begin transaction Reservation
...

end.

∗ Nested transaction
· The operations of a transaction may themselves be transactions.

Begin transaction Reservation
...
Begin transaction Airline
...

end.
Begin transaction Hotel
...

end.
end.

∗ Workflows (next slide)

240 www.edutechlearners.com

Classification of Transactions . . .

• Workflows: A collection of tasks organized to accomplish a given business process

– Workflows generalize transactions and are more expressive to model complex
business processes

– Types of workflows:

∗ Human-oriented workflows
· Involve humans in performing the tasks.
· System support for collaboration and coordination; but no system-wide

consistency definition
∗ System-oriented workflows
· Computation-intensive and specialized tasks that can be executed by a computer
· System support for concurrency control and recovery, automatic task execution,

notification, etc.
∗ Transactional workflows
· In between the previous two; may involve humans, require access to

heterogeneous, autonomous and/or distributed systems, and support selective
use of ACID properties

241 www.edutechlearners.com

Classification of Transactions . . .

• Example: We extend the reservation example and show a typical workflow

• T1: Customer request

• T2: Airline reservation

• T3: Hotel reservation

• T4: Auto reservation

• T5: Bill

242 www.edutechlearners.com

Transaction Processing Issues

• Transaction structure (usually called transaction model)

– Flat (simple), nested

• Internal database consistency

– Semantic data control (integrity enforcement) algorithms

• Reliability protocols

– Atomicity and Durability

– Local recovery protocols

– Global commit protocols

• Concurrency control algorithms

– How to synchronize concurrent transaction executions (correctness criterion)

– Intra-transaction consistency, isolation

• Replica control protocols

– How to control the mutual consistency of replicated data

243 www.edutechlearners.com

Conclusion

• A transaction is a collection of actions that transforms the system from one consistent
state into another consistent state

• Transaction T can be viewed as a partial order: T = {Σ,≺}, where Σ is the set of all
operations, and≺ denotes the order of operations. T can be also represented as a
directed acyclic graph (DAG)

• Transaction manager aims to achieve four properties of transactions: atomicity,
consistency, isolation, and durability

• Transactions can be classified according to (i) time, (ii) organization of reads and writes,
and (iii) structure

• Transaction processing involves reliability, concurrency, and replication protocols to
ensure the four properties of the transactions

244 www.edutechlearners.com

Chapter 9: Concurrency Control

• Concurrency, Conflicts, and Schedules

• Locking Based Algorithms

• Timestamp Ordering Algorithms

• Deadlock Management

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of this course.

245 www.edutechlearners.com

Chapter 10: Distributed DBMS Reliability

• Definitions and Basic Concepts

• Local Recovery Management

• In-place update, out-of-place update

• Distributed Reliability Protocols

• Two phase commit protocol

• Three phase commit protocol

Acknowledgements: I am indebted to Arturas Mazeika for providing me his slides of this course.

246 www.edutechlearners.com

Reliability

• A reliable DDBMS is one that can continue to process user requests even when the
underlying system is unreliable, i.e., failures occur

• Failures

– Transaction failures

– System (site) failures, e.g., system crash, power supply failure

– Media failures, e.g., hard disk failures

– Communication failures, e.g., lost/undeliverable messages

• Reliability is closely related to the problem of how to maintain the atomicity and
durability properties of transactions

247 www.edutechlearners.com

Reliability . . .

• Recovery system: Ensures atomicity and durability of transactions in the presence of
failures (and concurrent transactions)

• Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough information
exists to recover from failures

2. Actions taken after a failure to recover the DB contents to a state that ensures
atomicity, consistency and durability

248 www.edutechlearners.com

Local Recovery Management

• The local recovery manager (LRM) maintains the atomicity and durability properties of
local transactions at each site.

• Architecture

– Volatile storage: The main memory of the computer system (RAM)

– Stable storage

∗ A storage that “never” looses its contents
∗ In reality this can only be approximated by a combination of hardware (non-volatile

storage) and software (stable-write, stable-read, clean-up) components

249 www.edutechlearners.com

Local Recovery Management . . .

• Two ways for the LRM to deal with update/write operations

– In-place update

∗ Physically changes the value of the data item in the stable database
∗ As a result, previous values are lost
∗ Mostly used in databases

– Out-of-place update

∗ The new value(s) of updated data item(s) are stored separately from the old
value(s)

∗ Periodically, the updated values have to be integrated into the stable DB

250 www.edutechlearners.com

FaaDoOEngineers.com

In-Place Update

• Since in-place updates cause previous values of the affected data items to be lost, it is
necessary to keep enough information about the DB updates in order to allow recovery
in the case of failures

• Thus, every action of a transaction must not only perform the action, but must also write
a log record to an append-only log file

251 www.edutechlearners.com

In-Place Update . . .

• A log is the most popular structure for recording DB modifications on stable storage

• Consists of a sequence of log records that record all the update activities in the DB

• Each log record describes a significant event during transaction processing

• Types of log records

– < Ti, start >: if transaction Ti has started

– < Ti, X , V , V >: before T executes a (X), where V is the old value
before the write and V2 is the new value after the write

– < Ti, commit >: if Ti has committed

– < Ti,abort >: if Ti has aborted

– < checkpoint >

• With the information in the log file the recovery manager can restore the consistency of
the DB in case of a failure.

252 www.edutechlearners.com

In-Place Update . . .

• Assume the following situation when a system crash occurs

• Upon recovery:

– All effects of transaction T1 should be reflected in the database (⇒ REDO)

– None of the effects of transaction T2 should be reflected in the database (⇒ UNDO)

253 www.edutechlearners.com

In-Place Update . . .

• REDO Protocol

– REDO’ing an action means performing it again

– The REDO operation uses the log information and performs the action that might
have been done before, or not done due to failures

– The REDO operation generates the new image

254 www.edutechlearners.com

In-Place Update . . .

• UNDO Protocol

– UNDO’ing an action means to restore the object to its image before the transaction
has started

– The UNDO operation uses the log information and restores the old value of the object

255 www.edutechlearners.com

In-Place Update . . .

• Example: Consider the transactions T0 and T1 (T0 executes before T1) and the
following initial values: A = 1000, B = 2000, and C = 700

T0: read(A)
A = A − 50
write(A)
read(B)
B = B + 50
write(B)

T1: read(C)
C = C − 100
write(C)

– Possible order of actual outputs to the log file and the DB:

Log

< T0, start >
< T0, A, 1000, 950 >
< T0, B, 2000, 2050 >
< T0, commit >

A = 950
B = 2050

< T1, start >
< T1, C, 700, 600 >
< T1, commit >

C = 600

256 www.edutechlearners.com

In-Place Update . . .

• Example (contd.): Consider the log after some system crashes and the corresponding
recovery actions

(a) < T0, start >

< T0, A, 1000, 950 >

< T0, B, 2000, 2050 >

(b) < T0, start >

< T0, A, 1000, 950 >

< T0, B, 2000, 2050 >

< T , commit >

< T , start >

< T1, C, 700, 600 >

(c) < T0, start >

< T0, A, 1000, 950 >

< T0, B, 2000, 2050 >

< T , commit >

< T , start >

< T1, C, 700, 600 >

< T1, commit >

(a) undo(T0): B is restored to 2000 and A to 1000

(b) undo(T1) and redo(T0): C is restored to 700, and then A and B are set to 950 and
2050, respectively

(c) redo(T0) and redo(T1): A and B are set to 950 and 2050, respectively; then C is set
to 600

257 www.edutechlearners.com

In-Place Update . . .

• Logging Interface

• Log pages/buffers can be written to stable storage in two ways:

– synchronously

∗ The addition of each log record requires that the log is written to stable storage
∗ When the log is written synchronoously, the executtion of the transaction is

supended until the write is complete → delay in response time

– asynchronously

∗ Log is moved to stable storage either at periodic intervals or when the buffer fills up.

258 www.edutechlearners.com

In-Place Update . . .

• When to write log records into stable storage?

• Assume a transaction T updates a page P

• Fortunate case

– System writes P in stable database

– System updates stable log for this update

– SYSTEM FAILURE OCCURS!... (before T commits)

– We can recover (undo) by restoring P to its old state by using the log

• Unfortunate case

– System writes P in stable database

– SYSTEM FAILURE OCCURS!... (before stable log is updated)

– We cannot recover from this failure because there is no log record to restore the old
value

• Solution: Write-Ahead Log (WAL) protocol

259 www.edutechlearners.com

In-Place Update . . .

• Notice:

– If a system crashes before a transaction is committed, then all the operations must be
undone. We need only the before images (undo portion of the log)

– Once a transaction is committed, some of its actions might have to be redone. We
need the after images (redo portion of the log)

• Write-Ahead-Log (WAL) Protocol

– Before a stable database is updated, the undo portion of the log should be written to
the stable log

– When a transaction commits, the redo portion of the log must be written to stable log
prior to the updating of the stable database

260 www.edutechlearners.com

Out-of-Place Update

• Two out-of-place strategies are shadowing and differential files

• Shadowing

– When an update occurs, don’t change the old page, but create a shadow page with
the new values and write it into the stable database

– Update the access paths so that subsequent accesses are to the new shadow page

– The old page is retained for recovery

• Differential files

– For each DB file F maintain

∗ a read-only part FR
∗ a differential file consisting of insertions part (DF+) and deletions part (DF−)

– Thus, F = (FR ∪ DF+) − DF−

261 www.edutechlearners.com

Distributed Reliability Protocols

• As with local reliability protocols, the distributed versions aim to maintain the atomicity
and durability of distributed transactions

• Most problematic issues in a distributed transaction are commit, termination, and
recovery

– Commit protocols

∗ How to execute a commit command for distributed transactions
∗ How to ensure atomicity (and durability)?

– Termination protocols

∗ If a failure occurs at a site, how can the other operational sites deal with it
∗ Non-blocking: the occurrence of failures should not force the sites to wait until the

failure is repaired to terminate the transaction

– Recovery protocols

∗ When a failure occurs, how do the sites where the failure occurred deal with it
∗ Independent: a failed site can determine the outcome of a transaction without

having to obtain remote information

262 www.edutechlearners.com

Commit Protocols

• Primary requirement of commit protocols is that they maintain the atomicity of distributed
transactions (atomic commitment)

– i.e., even though the exectution of the distributed transaction involves multiple sites,
some of which might fail while executing, the effects of the transaction on the
distributed DB is all-or-nothing.

• In the following we distinguish two roles

– Coordinator: The process at the site where the transaction originates and which
controls the execution

– Participant: The process at the other sites that participate in executing the transaction

263 www.edutechlearners.com

Centralized Two Phase Commit Protocol (2PC)

• Very simple protocol that ensures the atomic commitment of distributed transactions.

• Phase 1: The coordinator gets the participants ready to write the results into the
database

• Phase 2: Everybody writes the results into the database

• Global Commit Rule

– The coordinator aborts a transaction if and only if at least one participant votes to
abort it

– The coordinator commits a transaction if and only if all of the participants vote to
commit it

• Centralized since communication is only between coordinator and the participants

264 www.edutechlearners.com

Centralized Two Phase Commit Protocol (2PC) . . .

265 www.edutechlearners.com

Centralized Two Phase Commit Protocol (2PC) . . .

266 www.edutechlearners.com

Linear 2PC Protocol

• There is linear ordering between the sites for the purpose of communication

• Minimizes the communication, but low response time as it does not allow any parallelism

267 www.edutechlearners.com

Distributed 2PC Protocol

• Distributed 2PC protocol increases the communication between the nodes

• Phase 2 is not needed, since each participant sends its vote to all other participants (+
the coordinator), thus each participants can derive the global decision

268 www.edutechlearners.com

2PC Protocol and Site Failures

• Site failures in the 2PC protocol might lead to timeouts

• Timeouts are served by termination protocols

• We use the state transition diagrams of the 2PC for the analysis

• Coordinator timeouts: One of the partici-
pants is down. Depending on the state, the
coordinator can take the following actions:

– Timeout in INITIAL
∗ Do nothing

– Timeout in WAIT
∗ Coordinator is waiting for local decisions
∗ Cannot unilaterally commit
∗ Can unilaterally abort and send an ap-

propriate message to all participants

– Timeout in ABORT or COMMIT
∗ Stay blocked and wait for the acks (indef-

initely, if the site is down indefinitely)

269 www.edutechlearners.com

2PC Protocol and Site Failures . . .

• Participant timeouts: The coordinator site is
down. A participant site is in

– Timeout in INITIAL
∗ Participant waits for “prepare”, thus coor-

dinator must have failed in INITIAL state
∗ Participant can unilaterally abort

– Timeout in READY
∗ Participant has voted to commit, but does

not know the global decision
∗ Participant stays blocked (indefinitely, if

the coordinator is permanently down),
since participant cannot change its vote
or unilaterally decide to commit

270 www.edutechlearners.com

2PC Protocol and Site Failures . . .

• The actions to be taken after a recovery from a failure are specified in the recovery
protocol

• Coordinator site failure: Upon recovery, it
takes the following actions:

– Failure in INITIAL
∗ Start the commit process upon recovery

(since coordinator did not send anything
to the sites)

– Failure in WAIT
∗ Restart the commit process upon recov-

ery (by sending “prepare” again to the
participants)

– Failure in ABORT or COMMIT
∗ Nothing special if all the acks have been

received from participants
∗ Otherwise the termination protocol is in-

volved (re-ask the acks)

271 www.edutechlearners.com

2PC Protocol and Site Failures . . .

• Participant site failure: The coordinator sites
recovers

– Failure in INITIAL
∗ Unilaterally abort upon recovery as the

coordinator will eventually timeout since
it will not receive the participant’s deci-
sion due to the failure

– Failure in READY
∗ The coordinator has been informed

about the local decision
∗ Treat as timeout in READY state and in-

voke the termination protocol (re-ask the
status)

– Failure in ABORT or COMMIT
∗ Nothing special needs to be done

272 www.edutechlearners.com

2PC Protocol and Site Failures . . .

• Additional cases

– Coordinator site fails after writing ”begin commit” log and before sending ”prepare”
command

∗ treat it as a failure in WAIT state; send ”prepare” command

– Participant site fails after writing ”ready” record in log but before ”vote-commit” is sent

∗ treat it as failure in READY state
∗ alternatively, can send ”vote-commit” upon recovery

– Participant site fails after writing ”abort” record in log but before ”vote-abort” is sent

∗ no need to do anything upon recovery

– Coordinator site fails after logging its final decision record but before sending its
decision to the participants

∗ coordinator treats it as a failure in COMMIT or ABORT state
∗ participants treat it as timeout in the READY state

– Participant site fails after writing ”abort” or ”commit” record in log but before
acknowledgement is sent

∗ participant treats it as failure in COMMIT or ABORT state
∗ coordinator will handle it by timeout in COMMIT or ABORT state

273 www.edutechlearners.com

Problems with 2PC Protocol

• A protocol is non-blocking if it permits a transaction to terminate at the operational sites
without waiting for recovery of the failed site.

– Significantly improves the response-time of transactions

• 2PC protocol is blocking

– Ready implies that the participant waits for the coordinator

– If coordinator fails, site is blocked until recovery; independent recovery is not possible

– The problem is that sites might be in both: commit and abort phases.

274 www.edutechlearners.com

Three Phase Commit Protocol (3PC)

• 3PC is a non-blocking protocol when failures are restricted to single site failures

• The state transition diagram contains

– no state which is ”adjacent” to both a commit and an abort state

– no non-committable state which is ”adjacent” to a commit state

• Adjacent: possible to go from one status to another with a single state transition

• Committable: all sites have voted to commit a transaction (e.g.: COMMIT state)

• Solution: Insert another state between the WAIT (READY) and COMMIT states

275 www.edutechlearners.com

Three Phase Commit Protocol (3PC) . . .

276 www.edutechlearners.com

Three Phase Commit Protocol (3PC) . . .

277 www.edutechlearners.com

Conclusion

• Recovery management enables resilience from certain types of failures and ensures
atomicity and durability of transactions

• Local recovery manager (LRM) enables resilience from certain types of failures locally.
LRM might employ out-of-place and in-place strategies to deal with updates. In case of
the in-place strategy an additional log is used for recovery

• Distributed reliablity protocols are more complicated, in particular the commit,
termination, and recovery protocols.

• 2PC protocol first gets participants ready for the transaction (phase 1), and then asks the
participants to write the transaction (phase 2). 2PC is a blocking protocol.

• 3PC first gets participants ready for the transaction (phase 1), pre-commits/aborts the
transaction (phase 2), and then asks the participants to commit/abort the transaction
(phase 3). 3PC is non-blocking.

278 www.edutechlearners.com

Concurrency

• Concurrency control is the problem of synchronizing concurrent transactions (i.e.,
order the operations of concurrent transactions) such that the following two properties
are achieved:

– the consistency of the DB is maintained

– the maximum degree of concurrency of operations is achieved

• Obviously, the serial execution of a set of transaction achieves consistency, if each single
transaction is consistent

279 www.edutechlearners.com

Conflicts

• Conflicting operations: Two operations Oij(x) and Okl(x) of transactions Ti and Tk

are in conflict iff at least one of the operations is a write, i.e.,

– Oij = read(x) and Okl = write(x)

– Oij = write(x) and Okl = read(x)

– Oij = write(x) and Okl = write(x)

• Intuitively, a conflict between two operations indicates that their order of execution is
important.

• Read operations do not conflict with each other, hence the ordering of read operations
does not matter.

• Example: Consider the following two transactions

T1: Read(x)
x← x + 1
Write(x)
Commit

T2: Read(x)
x← x + 1
Write(x)
Commit

– To preserve DB consistency, it is important that the read(x) of one transaction is not
between read(x) and write(x) of the other transaction.

280 www.edutechlearners.com

Schedules

• A schedule (history) specifies a possibly interleaved order of execution of the operations
O of a set of transactions T = {T1, T2, . . . , Tn}, where Ti is specified by a partial
order (Σi,≺i). A schedule can be specified as a partial order over O, where

– ΣT =
⋃n

i=1
Σi

– ≺T ⊇
n
i=1
≺i

– For any two conflicting operations Oij , Okl ∈ ΣT , either Oij ≺T Okl or
Okl ≺T Oij

281 www.edutechlearners.com

Schedules . . .

• Example: Consider the following two transactions

T1: Read(x)
x← x + 1
Write(x)
Commit

T2: Read(x)
x← x + 1
Write(x)
Commit

– A possible schedule over T = {T1,T2} can be written as the partial order
S = Σ ,{T1 <T}, where

ΣT = {R1(x), W1(x), C1, R2(x), W2(x), C2}

≺T = {(R1, W1), (R1, C1), (W1, C1),

(R2, W2), (R2, C2), (W2, C2),

(R2, W1), (W1, W2), . . . }

282 www.edutechlearners.com

Schedules . . .

• A schedule is serial if all transactions in T are executed serially.

• Example: Consider the following two transactions

T1: Read(x)
x← x + 1
Write(x)
Commit

T2: Read(x)
x← x + 1
Write(x)
Commit

– The two serial schedules are S1 = {Σ1,≺1} and S2 = {Σ2,≺2}, where

Σ1 = Σ 2 = {R1 (x),W1 (x),C1 ,R2 (x),W2(x),C2}
≺1= {(R1, W1), (R1, C1), (W1, C1), (R2, W2), (R2, C2), (W2, C2),

(C1, R2), . . . }

≺2= {(R1, W1), (R1, C1), (W1, C1), (R2, W2), (R2, C2), (W2, C2),

(C2, R1), . . . }

• We will also use the following notation:

– {T1, T2} = {R1(x), W1(x), C1, R2(x), W2(x), C2}

– {T2, T1} = {R2(x), W2(x), C2, R1(x), W1(x), C1}

283 www.edutechlearners.com

Serializability

• Two schedules are said to be equivalent if they have the same effect on the DB.

• Conflict equivalence: Two schedules S1 and S2 defined over the same set of
transactions T = {T1, T2, . . . , Tn} are said to be conflict equivalent if for each pair
of conflicting operations Oij and Okl, whenever Oij <1 Okl then Oij <2 Okl.

– i.e., conflicting operations must be executed in the same order in both transactions.

• A concurrent schedule is said to be (conflict-)serializable iff it is conflict equivalent to a
serial schedule

• A conflict-serializable schedule can be transformed into a serial schedule by swapping
non-conflicting operations

• Example: Consider the following two schedules

T1: Read(x)
x← x + 1
Write(x)
Write(z)
Commit

T2: Read(x)
x← x + 1
Write(x)
Commit

– The schedule {R1(x), W1(x), R2(x), W2(x), W1(z), C2, C1} is
conflict-equivalent to {T1, T2} but not to {T2, T1}

284 www.edutechlearners.com

Serializability . . .

• The primary function of a concurrency controller is to generate a serializable schedule
for the execution of pending transactions.

• In a DDBMS two schedules must be considered

– Local schedule

– Global schedule (i.e., the union of the local schedules)

• Serializability in DDBMS

– Extends in a straightforward manner to a DDBMS if data is not replicated

– Requires more care if data is replicated : It is possible that the local schedules are
serializable, but the mutual consistency of the DB is not guaranteed.

∗ Mutual consistency: All the values of all replicated data items are identical

• Therefore, a serializable global schedule must meet the following conditions:

– Local schedules are serializable

– Two conflicting operations should be in the same relative order in all of the local
schedules they appear

∗ Transaction needs to be run on each site with the replicated data item

285 www.edutechlearners.com

Serializability . . .

• Example: Consider two sites and a data item x which is replicated at both sites.

T1: Read(x)
x← x + 5
Write(x)

T2: Read(x)
x← x ∗ 10
Write(x)

– Both transactions need to run on both sites

– The following two schedules might have been produced at both sites (the order is
implicitly given):

∗ Site1: S1 = {R1(x), W1(x), R2(x), W2(x)}
∗ Site2: S2 = {R2(x), W2(x), R1(x), W1(x)}

– Both schedules are (trivially) serializable, thus are correct in the local context

– But they produce different results, thus violate the mutual consistency

286 www.edutechlearners.com

Concurrency Control Algorithms

• Taxonomy of concurrency control algorithms

– Pessimistic methods assume that many transactions will conflict, thus the concurrent
execution of transactions is synchronized early in their execution life cycle

∗ Two-Phase Locking (2PL)
· Centralized (primary site) 2PL
· Primary copy 2PL
· Distributed 2PL

∗ Timestamp Ordering (TO)
· Basic TO
· Multiversion TO
· Conservative TO

∗ Hybrid algorithms

– Optimistic methods assume that not too many transactions will conflict, thus delay
the synchronization of transactions until their termination

∗ Locking-based
∗ Timestamp ordering-based

287 www.edutechlearners.com

Locking Based Algorithms

• Locking-based concurrency algorithms ensure that data items shared by conflicting
operations are accessed in a mutually exclusive way. This is accomplished by
associating a “lock” with each such data item.

• Two types of locks (lock modes)

– read lock (rl) – also called shared lock

– write lock (wl) – also called exclusive lock

• Compatibility matrix of locks

rli(x) wli(x)

rlj(x) compatible not compatible

wlj(x) not compatible not compatible

• General locking algorithm

1. Before using a data item x, transaction requests lock for x from the lock manager

2. If x is already locked and the existing lock is incompatible with the requested lock, the
transaction is delayed

3. Otherwise, the lock is granted

288 www.edutechlearners.com

Locking Based Algorithms

• Example: Consider the following two transactions

T1: Read(x)
x← x + 1
Write(x)
Read(y)
y ← y − 1
Write(y)

T2: Read(x)
x← x ∗ 2
Write(x)
Read(y)
y ← y ∗ 2
Write(y)

– The following schedule is a valid locking-based schedule (lr (x) indicates the
release of a lock on x):

S = {wl1(x), R1(x), W1(x), lr1(x)

wl2(x), R2(x), W2(x), lr2(x)

wl2(y), R2(y), W2(y), lr2(y)

wl1(y), R1(y), W1(y), lr1(y)}

– However, S is not serializable

∗ S cannot be transformed into a serial schedule by using only non-conflicting swaps
∗ The result is different from the result of any serial execution

289 www.edutechlearners.com

Two-Phase Locking (2PL)

• Two-phase locking protocol

– Each transaction is executed in two phases

∗ Growing phase: the transaction obtains locks
∗ Shrinking phase: the transaction releases locks

– The lock point is the moment when transitioning from the growing phase to the
shrinking phase

290 www.edutechlearners.com

Two-Phase Locking (2PL) . . .

• Properties of the 2PL protocol

– Generates conflict-serializable schedules

– But schedules may cause cascading aborts
∗ If a transaction aborts after it releases a lock, it may cause other transactions that

have accessed the unlocked data item to abort as well

• Strict 2PL locking protocol

– Holds the locks till the end of the transaction

– Cascading aborts are avoided

291 www.edutechlearners.com

Two-Phase Locking (2PL) . . .

• Example: The schedule S of the previous example is not valid in the 2PL protocol:

S = {wl1(x), R1(x), W1(x), lr1(x)

wl2(x), R2(x), W2(x), lr2(x)

wl2(y), R2(y), W2(y), lr2(y)

wl1(y), R1(y), W1(y), lr1(y)}

– e.g., after lr (x) (in line 1) transaction T cannot request the lock wl (y) (in line 4).

– Valid schedule in the 2PL protocol

S = {wl1(x), R1(x), W1(x),

wl1(y), R1(y), W1(y), lr1(x), lr1(y)

wl2(x), R2(x), W2(x),

wl2(y), R2(y), W2(y), lr2(x), lr2(y)}

DDB 2008/09 J. Gamper Page 15292 www.edutechlearners.com

2PL for DDBMS

• Various extensions of the 2PL to DDBMS

• Centralized 2PL

– A single site is responsible for the lock management, i.e., one lock manager for the
whole DDBMS

– Lock requests are issued to the lock manager

– Coordinating transaction manager (TM at site where the transaction is initiated) can
make all locking requests on behalf of local transaction managers

• Advantage: Easy to implement

• Disadvantages: Bottlenecks
and lower reliability

• Replica control protocol is addi-
tionally needed if data are repli-
cated (see also primary copy
2PL)

293 www.edutechlearners.com

2PL for DDBMS . . .

• Primary copy 2PL

– Several lock managers are distributed to a number of sites

– Each lock manager is responsible for managing the locks for a set of data items

– For replicated data items, one copy is chosen as primary copy, others are slave
copies

– Only the primary copy of a data item that is updated needs to be write-locked

– Once primary copy has been updated, the change is propagated to the slaves

• Advantages

– Lower communication costs and better performance than the centralized 2PL

• Disadvantages

– Deadlock handling is more complex

294 www.edutechlearners.com

2PL for DDBMS . . .

• Distributed 2PL

– Lock managers are distributed to all sites

– Each lock manager responsible for locks for data at that site

– If data is not replicated, it is equivalent to primary copy 2PL

– If data is replicated, the Read-One-Write-All (ROWA) replica control protocol is

implemented
 Read(x): Any copy of a replicated item x can be read by obtaining a read lock on
the copy
∗ Write(x): All copies of x must be write-locked before x can be updated

• Disadvantages

– Deadlock handling more complex

– Communication costs higher than primary copy 2PL

295 www.edutechlearners.com

2PL for DDBMS . . .

• Communication structure of the distributed 2PL

– The coordinating TM sends the lock request to the lock managers of all participating
sites

– The LMs pass the operations to the data processors

– The end of the operation is signaled to the coordinating TM

296 www.edutechlearners.com

Timestamp Ordering

• Timestamp-ordering based algorithms do not maintain serializability by mutual
exclusion, but select (a priori) a serialization order and execute transactions accordingly.

– Transaction Ti is assigned a globally unique timestamp ts(Ti)

– Conflicting operations Oij and Okl are resolved by timestamp order, i.e., Oij is
executed before Okl iff ts(Ti) < ts(Tk).

• To allow for the scheduler to check whether operations arrive in correct order, each data
item is assigned a write timestamp (wts) and a read timestamp (rts):

– rts(x): largest timestamp of any read on x

– wts(x): largest timestamp of any write on x

• Then the scheduler has to perform the following checks:

– Read operation, Ri(x):
∗ If ts(Ti) < wts(x): Ti attempts to read overwritten data; abort Ti

∗ If ts(Ti) ≥ wts(x): the operation is allowed and rts(x) is updated

– Write operations, Wi(x):
∗ If ts(Ti) < rts(x): x was needed before by other transaction; abort Ti

∗ If ts(Ti) < wts(x): Ti writes an obsolete value; abort Ti

∗ Otherwise, execute Wi(x)

297 www.edutechlearners.com

Timestamp Ordering . . .

• Generation of timestamps (TS) in a distributed environment

– TS needs to be locally and globally unique and monotonically increasing

– System clock, incremental event counter at each site, or global counter are unsuitable
(difficult to maintain)

– Concatenate local timestamp/counter with a unique site identifier:
<local timestamp, site identifier>

∗ site identifier is in the least significant position in order to distinguish only if the local
timestamps are identical

• Schedules generated by the basic TO protocol have the following properties:

– Serializable

– Since transactions never wait (but are rejected), the schedules are deadlock-free

– The price to pay for deadlock-free schedules is the potential restart of a transaction
several times

298 www.edutechlearners.com

Timestamp Ordering . . .

• Basic timestamp ordering is “aggressive”: It tries to execute an operation as soon as it
receives it

• Conservative timestamp ordering delays each operation until there is an assurance that
it will not be restarted, i.e., that no other transaction with a smaller timestamp can arrive

– For this, the operations of each transaction are buffered until an ordering can be
established so that rejections are not possible

• If this condition can be guaranteed, the scheduler will never reject an operation

• However, this delay introduces the possibility for deadlocks

299 www.edutechlearners.com

Timestamp Ordering . . .

• Multiversion timestamp ordering

– Write operations do not modify the DB; instead, a new version of the data item is
created: x1, x2, . . . , xn

– Ri(x) is always successful and is performed on the appropriate version of x, i.e., the
version of x (say x) such that wts(xw) is the largest timestamp less than ts(Ti)

– Wi(x) produces a new version xwwith ts(xw) = ts(Ti) if the scheduler has not
yet processed any Rj(xr) on a version xr such that

ts(Ti) < rts(xr)

i.e., the write is too late.

– Otherwise, the write is rejected.

300 www.edutechlearners.com

Timestamp Ordering . . .

• The previous concurrency control algorithms are pessimistic

• Optimistic concurrency control algorithms

– Delay the validation phase until just before the write phase

– Ti run independently at each site on local copies of the DB (without updating the DB)

– Validation test then checks whether the updates would maintain the DB consistent:

∗ If yes, all updates are performed
∗ If one fails, all Ti’s are rejected

• Potentially allow for a higher level of concurrency

301 www.edutechlearners.com

Deadlock Management

• Deadlock: A set of transactions is in a deadlock situation if several transactions wait for
each other. A deadlock requires an outside intervention to take place.

• Any locking-based concurrency control algorithm may result in a deadlock, since there is
mutual exclusive access to data items and transactions may wait for a lock

• Some TO-based algorihtms that require the waiting of transactions may also cause
deadlocks

• A Wait-for Graph (WFG) is a useful tool to identify deadlocks

– The nodes represent transactions

– An edge from Ti to Tj indicates that Ti is waiting for Tj

– If the WFG has a cycle, we have a deadlock situation

302 www.edutechlearners.com

Deadlock Management . . .

• Deadlock management in a DDBMS is more complicate, since lock management is not
centralized

• We might have global deadlock, which involves transactions running at different sites

• A Local Wait-for-Graph (LWFG) may not show the existence of global deadlocks

• A Global Wait-for Graph (GWFG), which is the union of all LWFGs, is needed

303 www.edutechlearners.com

Deadlock Management . . .

• Example: Assume T1 and T2 run at site 1, T3 and T4 run at site 2, and the following
wait-for relationships between them: T1 → T2 → T3 → T4 → T1. This deadlock
cannot be detected by the LWFGs, but by the GWFG which shows intersite waiting.

– Local WFG:

– Global WFG:

304 www.edutechlearners.com

Deadlock Prevention

• Deadlock prevention: Guarantee that deadlocks never occur

– Check transaction when it is initiated, and start it only if all required resources are
available.

– All resources which may be needed by a transaction must be predeclared

• Advantages

– No transaction rollback or restart is involved

– Requires no run-time support

• Disadvantages

– Reduced concurrency due to pre-allocation

– Evaluating whether an allocation is safe leads to added overhead

– Difficult to determine in advance the required resources

305 www.edutechlearners.com

Deadlock Avoidance

• Deadlock avoidance: Detect potential deadlocks in advance and take actions to ensure
that a deadlock will not occur. Transactions are allowed to proceed unless a requested
resource is unavailable

• Two different approaches:

– Ordering of data items: Order data items and sites; locks can only be requested in
that order (e.g., graph-based protocols)

– Prioritize transactions: Resolve deadlocks by aborting transactions with higher or

lower priority. The following schemes assume that Ti requests a lock hold by Tj:
Wait-Die Scheme: if ts(Ti) < ts(Tj) then Ti waits else Ti dies

 Wound-Wait Scheme: if ts(Ti) < ts(Tj) then Tj wounds (aborts) else Ti waits

• Advantages

– More attractive than prevention in a database environment

– Transactions are not required to request resources a priori

• Disadvantages

– Requires run time support

306 www.edutechlearners.com

Deadlock Detection

• Deadlock detection and resolution: Transactions are allowed to wait freely, and hence
to form deadlocks. Check global wait-for graph for cycles. If a deadlock is found, it is
resolved by aborting one of the involved transactions (also called the victim).

• Advantages

– Allows maximal concurrency

– The most popular and best-studied method

• Disadvantages

– Considerable amount of work might be undone

• Topologies for deadlock detection algorithms

– Centralized

– Distributed

– Hierarchical

307 www.edutechlearners.com

Deadlock Detection . . .

• Centralized deadlock detection

– One site is designated as the deadlock detector (DDC) for the system

– Each scheduler periodically sends its LWFG to the central site

– The site merges the LWFG to a GWFG and determines cycles

– If one or more cycles exist, DDC breaks each cycle by selecting transactions to be
rolled back and restarted

• This is a reasonable choice if the concurrency control algorithm is also centralized

308 www.edutechlearners.com

Deadlock Detection . . .

• Hierarchical deadlock detection

– Sites are organized into a hierarchy

– Each site sends its LWFG to the site above it in the hierarchy for the detection of
deadlocks

– Reduces dependence on centralized detection site

309 www.edutechlearners.com

Deadlock Detection . . .

• Distributed deadlock detection

– Sites cooperate in deadlock detection

– The local WFGs are formed at each site and passed on to the other sites.

– Each local WFG is modified as follows:

∗ Since each site receives the potential deadlock cycles from other sites, these
edges are added to the local WFGs
∗ i.e., the waiting edges of the local WFG are joined with waiting edges of the

external WFGs

– Each local deadlock detector looks for two things:

∗ If there is a cycle that does not involve the external edge, there is a local deadlock
which can be handled locally
∗ If there is a cycle involving external edges, it indicates a (potential) global deadlock.

310 www.edutechlearners.com

Conclusion

• Concurrency orders the operations of transactions such that two properties are
achieved: (i) the database is always in a consistent state and (ii) the maximum
concurrency of operations is achieved

• A schedule is some order of the operations of the given transactions. If a set of
transactions is executed one after the other, we have a serial schedule.

• There are two main groups of serializable concurrency control algorithms: locking based
and timestamp based

• A transaction is deadlocked if two or more transactions are waiting for each other. A
Wait-for graph (WFG) is used to identify deadlocks

• Centralized, distributed, and hierarchical schemas can be used to identify deadlocks

311 www.edutechlearners.com

	Syllabus
	Data Independence
	Data Independence …
	Distributed Computing/Data Processing
	Distributed Computing/Data Processing …
	Definition of DDB and DDBMS
	Definition of DDB and DDBMS …
	Definition of DDB and DDBMS …
	What is not a DDBS?
	Applications
	Promises of DDBSs
	Promises of DDBSs …
	Complicating Factors
	Technical Problems to be Studied …
	Conclusion
	ddb02.pdf
	Definition
	Motivation for Standardization of DDBMS Architecture
	Standardization
	Standardization …
	ANSI/SPARC Architecture of DBMS
	Example
	Example …
	Architectural Models for DDBMSs
	Architectural Models for DDBMSs …
	Client-Server Architecture for DDBMS (Data-based)
	Peer-to-Peer Architecture for DDBMS (Data-based)
	Multi-DBMS Architecture (Data-based)
	Multi-DBMS Architecture (Data-based) …
	Regular DBMS (Component-based)
	General DDBMS (Component-based)
	Client-Server Architecture (Component-based)
	Components of Client-Server Architecture (Component-based)
	Components of Client-Server Architecture (Component-based) …
	Components of Peer-to-Peer Architecture (Component-based)
	Components of Multi-DBMS Architecture (Component-based)
	Conclusion

	ddb03.pdf
	Design Problem
	Framework of Distribution
	Design Strategies
	Design Strategies …
	Fragmentation
	Fragmentation …
	Correctness Rules of Fragmentation
	Horizontal Fragmentation
	Horizontal Fragmentation …
	Vertical Fragmentation
	Vertical Fragmentation …
	Correctness of Vertical Fragmentation
	Mixed Fragmentation
	Replication and Allocation
	Replication …
	Fragment Allocation
	Fragment Allocation …
	Conclusion

	ddb04.pdf
	Semantic Data Control
	View Management
	View Management in Centralized Databases
	View Management in Centralized Databases …
	View Management in Distributed Databases
	Data Security
	Data Protection
	Authorization Control
	Authorization Control …
	Distributed Authorization Control
	Semantic Integrity Constraints
	Semantic Integrity Constraint Specification
	Semantic Integrity Constraint Specification …
	Semantic Integrity Constraints Enforcement
	Semantic Integrity Constraints Enforcement …
	Distributed Constraints
	Conclusion

	ddb05.pdf
	Query Processing Overview
	Query Processing …
	Query Processing Example
	Query Processing Example …
	Query Optimization
	Query Optimization …
	Query Optimization Issues
	Query Optimization Issues …
	Distributed Query Processing Steps
	Conclusion

	ddb06.pdf
	Query Decomposition
	Data Localization
	Data Localization …
	Data Localizations Issues
	Conclusion

	ddb07.pdf
	Basic Concepts
	Basic Concepts …
	Distributed Cost Model
	Distributed Cost Model …
	Database Statistics
	Database Statistics …
	Join Ordering in Fragment Queries
	Join Ordering in Fragment Queries …
	Semijoin Based Algorithms
	Semijoin Based Algorithms
	INGRES Algorithm
	INGRES Algorithm …
	Distributed INGRES Algorithm
	System R Algorithm
	System R Algorithm …
	Distributed System R* Algorithm
	Distributed System R* Algorithm …
	Hill-Climbing Algorithm
	Hill-Climbing Algorithm …
	SDD-1
	Conclusion

	ddb08.pdf
	Definition
	Definition …
	Example
	Example …
	Formalization of a Transaction
	Formalization of a Transaction …
	Properties of Transactions
	Properties of Transactions …
	Classification of Transactions
	Classification of Transactions …
	Transaction Processing Issues
	Conclusion

	ddb09.pdf
	Concurrency
	Conflicts
	Schedules
	Schedules …
	Schedules …
	Serializability
	Serializability …
	Serializability …
	Concurrency Control Algorithms
	Locking Based Algorithms
	Two-Phase Locking (2PL)
	Two-Phase Locking (2PL) …
	2PL for DDBMS
	2PL for DDBMS …
	Timestamp Ordering
	Timestamp Ordering …
	Deadlock Management
	Deadlock Management …
	Deadlock Prevention
	Deadlock Avoidance
	Deadlock Detection
	Deadlock Detection …
	Conclusion

	ddb10.pdf
	Reliability
	Reliability …
	Local Recovery Management
	Local Recovery Management …
	In-Place Update
	In-Place Update …
	Out-of-Place Update
	Distributed Reliability Protocols
	Commit Protocols
	Centralized Two Phase Commit Protocol (2PC)
	Centralized Two Phase Commit Protocol (2PC) …
	Centralized Two Phase Commit Protocol (2PC) …
	Linear 2PC Protocol
	Distributed 2PC Protocol
	2PC Protocol and Site Failures
	2PC Protocol and Site Failures …
	2PC Protocol and Site Failures …
	2PC Protocol and Site Failures …
	2PC Protocol and Site Failures …
	Problems with 2PC Protocol
	Three Phase Commit Protocol (3PC)
	Three Phase Commit Protocol (3PC) …
	Three Phase Commit Protocol (3PC) …
	Conclusion

